These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 21297869)

  • 21. Combining familiarity and landscape features helps break down the barriers between movements and home ranges in a non-territorial large herbivore.
    Marchand P; Garel M; Bourgoin G; Duparc A; Dubray D; Maillard D; Loison A
    J Anim Ecol; 2017 Mar; 86(2):371-383. PubMed ID: 27981576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A random acceleration model of individual animal movement allowing for diffusive, superdiffusive and superballistic regimes.
    Tilles PFC; Petrovskii SV; Natti PL
    Sci Rep; 2017 Oct; 7(1):14364. PubMed ID: 29085003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement.
    Kranstauber B; Kays R; Lapoint SD; Wikelski M; Safi K
    J Anim Ecol; 2012 Jul; 81(4):738-46. PubMed ID: 22348740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian Bridge Movement Models.
    Silva I; Crane M; Marshall BM; Strine CT
    Mov Ecol; 2020; 8():43. PubMed ID: 33133609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data.
    Ovaskainen O; Rekola H; Meyke E; Arjas E
    Ecology; 2008 Feb; 89(2):542-54. PubMed ID: 18409443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Random walk models in biology.
    Codling EA; Plank MJ; Benhamou S
    J R Soc Interface; 2008 Aug; 5(25):813-34. PubMed ID: 18426776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A random walk model that accounts for space occupation and movements of a large herbivore.
    Berthelot G; Saïd S; Bansaye V
    Sci Rep; 2021 Jul; 11(1):14061. PubMed ID: 34234205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On modeling animal movements using Brownian motion with measurement error.
    Pozdnyakov V; Meyer T; Wang YB; Yan J
    Ecology; 2014 Feb; 95(2):247-53. PubMed ID: 24669719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras.
    Silva I; Crane M; Suwanwaree P; Strine C; Goode M
    PLoS One; 2018; 13(9):e0203449. PubMed ID: 30226846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partial differential equation techniques for analysing animal movement: A comparison of different methods.
    Wang YS; Potts JR
    J Theor Biol; 2017 Mar; 416():52-67. PubMed ID: 28063843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Equivalence between Step Selection Functions and Biased Correlated Random Walks for Statistical Inference on Animal Movement.
    Duchesne T; Fortin D; Rivest LP
    PLoS One; 2015; 10(4):e0122947. PubMed ID: 25898019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inference from habitat-selection analysis depends on foraging strategies.
    Bastille-Rousseau G; Fortin D; Dussault C
    J Anim Ecol; 2010 Nov; 79(6):1157-63. PubMed ID: 20678139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial scale and movement behaviour traits control the impacts of habitat fragmentation on individual fitness.
    Cattarino L; McAlpine CA; Rhodes JR
    J Anim Ecol; 2016 Jan; 85(1):168-77. PubMed ID: 26250334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using pseudo-absence models to test for environmental selection in marine movement ecology: the importance of sample size and selection strength.
    Pinti J; Shatley M; Carlisle A; Block BA; Oliver MJ
    Mov Ecol; 2022 Dec; 10(1):60. PubMed ID: 36581885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffusion about the mean drift location in a biased random walk.
    Codling EA; Bearon RN; Thorn GJ
    Ecology; 2010 Oct; 91(10):3106-13. PubMed ID: 21058570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling utilization distributions in space and time.
    Keating KA; Cherry S
    Ecology; 2009 Jul; 90(7):1971-80. PubMed ID: 19694144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perceptual Ranges, Information Gathering, and Foraging Success in Dynamic Landscapes.
    Fagan WF; Gurarie E; Bewick S; Howard A; Cantrell RS; Cosner C
    Am Nat; 2017 May; 189(5):474-489. PubMed ID: 28410028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inference in MCMC step selection models.
    Michelot T; Blackwell PG; Chamaillé-Jammes S; Matthiopoulos J
    Biometrics; 2020 Jun; 76(2):438-447. PubMed ID: 31654395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting local and non-local effects of resources on animal space use using a mechanistic step selection model.
    Potts JR; Bastille-Rousseau G; Murray DL; Schaefer JA; Lewis MA
    Methods Ecol Evol; 2014 Mar; 5(3):253-262. PubMed ID: 25834721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Animal movement rates as behavioural bouts.
    Nams VO
    J Anim Ecol; 2006 Jan; 75(1):298-302; discussion 303-8. PubMed ID: 16903067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.