BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 21298063)

  • 1. Age-related changes in the epithelial and stromal compartments of the mammary gland in normocalcemic mice lacking the vitamin D3 receptor.
    Welsh J; Zinser LN; Mianecki-Morton L; Martin J; Waltz SE; James H; Zinser GM
    PLoS One; 2011 Jan; 6(1):e16479. PubMed ID: 21298063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin D(3) receptor ablation alters mammary gland morphogenesis.
    Zinser G; Packman K; Welsh J
    Development; 2002 Jul; 129(13):3067-76. PubMed ID: 12070083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of vitamin D receptor signaling from the mammary epithelium or adipose tissue alters pubertal glandular development.
    Johnson AL; Zinser GM; Waltz SE
    Am J Physiol Endocrinol Metab; 2014 Oct; 307(8):E674-85. PubMed ID: 25139050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adipose-specific Vdr deletion alters body fat and enhances mammary epithelial density.
    Matthews DG; D'Angelo J; Drelich J; Welsh J
    J Steroid Biochem Mol Biol; 2016 Nov; 164():299-308. PubMed ID: 26429395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice.
    Zinser GM; Welsh J
    Mol Endocrinol; 2004 Sep; 18(9):2208-23. PubMed ID: 15178742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of Alx4, a stromally-restricted homeodomain protein, impairs mammary epithelial morphogenesis.
    Joshi PA; Chang H; Hamel PA
    Dev Biol; 2006 Sep; 297(1):284-94. PubMed ID: 16916507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammary adipocytes bioactivate 25-hydroxyvitamin D₃ and signal via vitamin D₃ receptor, modulating mammary epithelial cell growth.
    Ching S; Kashinkunti S; Niehaus MD; Zinser GM
    J Cell Biochem; 2011 Nov; 112(11):3393-405. PubMed ID: 21769914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin D receptor status alters mammary gland morphology and tumorigenesis in MMTV-neu mice.
    Zinser GM; Welsh J
    Carcinogenesis; 2004 Dec; 25(12):2361-72. PubMed ID: 15333467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the Vitamin D3 receptor on growth-regulatory pathways in mammary gland and breast cancer.
    Welsh J; Wietzke JA; Zinser GM; Smyczek S; Romu S; Tribble E; Welsh JC; Byrne B; Narvaez CJ
    J Steroid Biochem Mol Biol; 2002 Dec; 83(1-5):85-92. PubMed ID: 12650704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development.
    Wiesen JF; Young P; Werb Z; Cunha GR
    Development; 1999 Jan; 126(2):335-44. PubMed ID: 9847247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mouse mammary gland requires the actin-binding protein gelsolin for proper ductal morphogenesis.
    Crowley MR; Head KL; Kwiatkowski DJ; Asch HL; Asch BB
    Dev Biol; 2000 Sep; 225(2):407-23. PubMed ID: 10985859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland.
    Hovey RC; Trott JF; Ginsburg E; Goldhar A; Sasaki MM; Fountain SJ; Sundararajan K; Vonderhaar BK
    Dev Dyn; 2001 Oct; 222(2):192-205. PubMed ID: 11668597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue.
    Narvaez CJ; Matthews D; Broun E; Chan M; Welsh J
    Endocrinology; 2009 Feb; 150(2):651-61. PubMed ID: 18845643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional knockout of Lgr4 leads to impaired ductal elongation and branching morphogenesis in mouse mammary glands.
    Oyama K; Mohri Y; Sone M; Nawa A; Nishimori K
    Sex Dev; 2011; 5(4):205-12. PubMed ID: 21791950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RARα1 control of mammary gland ductal morphogenesis and wnt1-tumorigenesis.
    Cohn E; Ossowski L; Bertran S; Marzan C; Farias EF
    Breast Cancer Res; 2010; 12(5):R79. PubMed ID: 20923554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of hepatocyte growth factor/scatter factor and transforming growth factor-beta1 in mammary gland ductal morphogenesis.
    Soriano JV; Pepper MS; Orci L; Montesano R
    J Mammary Gland Biol Neoplasia; 1998 Apr; 3(2):133-50. PubMed ID: 10819523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stromal matrix metalloproteinase-11 is involved in the mammary gland postnatal development.
    Tan J; Buache E; Alpy F; Daguenet E; Tomasetto CL; Ren GS; Rio MC
    Oncogene; 2014 Jul; 33(31):4050-9. PubMed ID: 24141782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A developmental atlas of rat mammary gland histology.
    Masso-Welch PA; Darcy KM; Stangle-Castor NC; Ip MM
    J Mammary Gland Biol Neoplasia; 2000 Apr; 5(2):165-85. PubMed ID: 11149571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis.
    Wiseman BS; Sternlicht MD; Lund LR; Alexander CM; Mott J; Bissell MJ; Soloway P; Itohara S; Werb Z
    J Cell Biol; 2003 Sep; 162(6):1123-33. PubMed ID: 12975354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis.
    Zhang X; Martinez D; Koledova Z; Qiao G; Streuli CH; Lu P
    Development; 2014 Sep; 141(17):3352-62. PubMed ID: 25078648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.