These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 21298129)
1. Diffusion-mediated in situ alginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane. Lee KH; No da Y; Kim SH; Ryoo JH; Wong SF; Lee SH Lab Chip; 2011 Mar; 11(6):1168-73. PubMed ID: 21298129 [TBL] [Abstract][Full Text] [Related]
2. In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Lee BR; Hwang JW; Choi YY; Wong SF; Hwang YH; Lee DY; Lee SH Biomaterials; 2012 Jan; 33(3):837-45. PubMed ID: 22054535 [TBL] [Abstract][Full Text] [Related]
3. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Chen MC; Gupta M; Cheung KC Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849 [TBL] [Abstract][Full Text] [Related]
4. Micropatterning of hydrogels on locally hydrophilized regions on PDMS by stepwise solution dipping and in situ gelation. Sugaya S; Kakegawa S; Fukushima S; Yamada M; Seki M Langmuir; 2012 Oct; 28(39):14073-80. PubMed ID: 22991929 [TBL] [Abstract][Full Text] [Related]
5. Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme ("tandem" gelation) for the production of beads and liquid-core capsules. Cellesi F; Weber W; Fussenegger M; Hubbell JA; Tirelli N Biotechnol Bioeng; 2004 Dec; 88(6):740-9. PubMed ID: 15532084 [TBL] [Abstract][Full Text] [Related]
6. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro. Kuo CK; Ma PX J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237 [TBL] [Abstract][Full Text] [Related]
7. Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers. Cho SH; Lim SM; Han DK; Yuk SH; Im GI; Lee JH J Biomater Sci Polym Ed; 2009; 20(7-8):863-76. PubMed ID: 19454157 [TBL] [Abstract][Full Text] [Related]
8. Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel. Cha C; Kim SY; Cao L; Kong H Biomaterials; 2010 Jun; 31(18):4864-71. PubMed ID: 20347136 [TBL] [Abstract][Full Text] [Related]
9. In situ gelable glycation-resistant hydrogels composed of gelatin and oxidized alginate. Zhang H; Liao H; Chen W J Biomater Sci Polym Ed; 2010; 21(3):329-42. PubMed ID: 20178689 [TBL] [Abstract][Full Text] [Related]
10. Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Liang HF; Hong MH; Ho RM; Chung CK; Lin YH; Chen CH; Sung HW Biomacromolecules; 2004; 5(5):1917-25. PubMed ID: 15360306 [TBL] [Abstract][Full Text] [Related]
11. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Yu L; Chen MC; Cheung KC Lab Chip; 2010 Sep; 10(18):2424-32. PubMed ID: 20694216 [TBL] [Abstract][Full Text] [Related]
12. Encapsulation and culture of mammalian cells including corneal cells in alginate hydrogels. Hunt NC; Grover LM Methods Mol Biol; 2013; 1014():201-10. PubMed ID: 23690015 [TBL] [Abstract][Full Text] [Related]
13. Cryopreservation of encapsulated liver spheroids using a cryogen-free cooler: high functional recovery using a multi-step cooling profile. Massie I; Selden C; Morris J; Hodgson H; Fuller B Cryo Letters; 2011; 32(2):158-65. PubMed ID: 21766145 [TBL] [Abstract][Full Text] [Related]
14. Increased Survival and Function of Mesenchymal Stem Cell Spheroids Entrapped in Instructive Alginate Hydrogels. Ho SS; Murphy KC; Binder BY; Vissers CB; Leach JK Stem Cells Transl Med; 2016 Jun; 5(6):773-81. PubMed ID: 27057004 [TBL] [Abstract][Full Text] [Related]
15. Extending hepatocyte functionality for drug-testing applications using high-viscosity alginate-encapsulated three-dimensional cultures in bioreactors. Miranda JP; Rodrigues A; Tostões RM; Leite S; Zimmerman H; Carrondo MJ; Alves PM Tissue Eng Part C Methods; 2010 Dec; 16(6):1223-32. PubMed ID: 20184401 [TBL] [Abstract][Full Text] [Related]
16. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Balakrishnan B; Jayakrishnan A Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441 [TBL] [Abstract][Full Text] [Related]
17. Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments. Fonseca KB; Bidarra SJ; Oliveira MJ; Granja PL; Barrias CC Acta Biomater; 2011 Apr; 7(4):1674-82. PubMed ID: 21193068 [TBL] [Abstract][Full Text] [Related]
18. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Cellesi F; Tirelli N; Hubbell JA Biomaterials; 2004 Sep; 25(21):5115-24. PubMed ID: 15109835 [TBL] [Abstract][Full Text] [Related]
19. Patterning and transferring hydrogel-encapsulated bacterial cells for quantitative analysis of synthetically engineered genetic circuits. Choi WS; Kim M; Park S; Lee SK; Kim T Biomaterials; 2012 Jan; 33(2):624-33. PubMed ID: 22014463 [TBL] [Abstract][Full Text] [Related]
20. A multicellular spheroid formation and extraction chip using removable cell trapping barriers. Jin HJ; Cho YH; Gu JM; Kim J; Oh YS Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]