These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21298139)

  • 1. Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries.
    Li J; Wan W; Zhou H; Li J; Xu D
    Chem Commun (Camb); 2011 Mar; 47(12):3439-41. PubMed ID: 21298139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance.
    Beuvier T; Richard-Plouet M; Mancini-Le Granvalet M; Brousse T; Crosnier O; Brohan L
    Inorg Chem; 2010 Sep; 49(18):8457-64. PubMed ID: 20722375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries.
    Wang HE; Jin J; Cai Y; Xu JM; Chen DS; Zheng XF; Deng Z; Li Y; Bello I; Su BL
    J Colloid Interface Sci; 2014 Mar; 417():144-51. PubMed ID: 24407670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries.
    Muraliganth T; Vadivel Murugan A; Manthiram A
    Chem Commun (Camb); 2009 Dec; (47):7360-2. PubMed ID: 20024228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of nanoparticles-deposited double-walled TiO₂-B nanotubes with enhanced performance for lithium-ion batteries.
    Qu J; Cloud JE; Yang Y; Ding J; Yuan N
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22199-208. PubMed ID: 25419639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties.
    Li Q; Zhang J; Liu B; Li M; Liu R; Li X; Ma H; Yu S; Wang L; Zou Y; Li Z; Zou B; Cui T; Zou G
    Inorg Chem; 2008 Nov; 47(21):9870-3. PubMed ID: 18837547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO(2) anatase.
    Wagemaker M; Kentgens AP; Mulder FM
    Nature; 2002 Jul; 418(6896):397-9. PubMed ID: 12140552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries.
    Cao FF; Xin S; Guo YG; Wan LJ
    Phys Chem Chem Phys; 2011 Feb; 13(6):2014-20. PubMed ID: 21203647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast-Charging and Long-Life Li-Ion Battery Anodes of TiO
    Li K; Li B; Wu J; Kang F; Kim JK; Zhang TY
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35917-35926. PubMed ID: 28952316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries.
    Du N; Xu Y; Zhang H; Yu J; Zhai C; Yang D
    Inorg Chem; 2011 Apr; 50(8):3320-4. PubMed ID: 21395282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties.
    Li C; Yin X; Chen L; Li Q; Wang T
    Chemistry; 2010 May; 16(17):5215-21. PubMed ID: 20235237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures.
    Wang Q; Wen Z; Li J
    Inorg Chem; 2006 Aug; 45(17):6944-9. PubMed ID: 16903753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries.
    Zhang Y; Fu Q; Xu Q; Yan X; Zhang R; Guo Z; Du F; Wei Y; Zhang D; Chen G
    Nanoscale; 2015 Jul; 7(28):12215-24. PubMed ID: 26132786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery.
    Wang YQ; Gu L; Guo YG; Li H; He XQ; Tsukimoto S; Ikuhara Y; Wan LJ
    J Am Chem Soc; 2012 May; 134(18):7874-9. PubMed ID: 22530994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microemulsion-mediated sol-gel synthesis of mesoporous rutile TiO2 nanoneedles and its performance as anode material for Li-ion batteries.
    Khomane RB
    J Colloid Interface Sci; 2011 Apr; 356(1):369-72. PubMed ID: 21272892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery.
    Rong A; Gao XP; Li GR; Yan TY; Zhu HY; Qu JQ; Song DY
    J Phys Chem B; 2006 Aug; 110(30):14754-60. PubMed ID: 16869583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotubes with the TiO2-B structure.
    Armstrong G; Armstrong AR; Canales J; Bruce PG
    Chem Commun (Camb); 2005 May; (19):2454-6. PubMed ID: 15886768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile titanium glycolate precursor route to mesoporous Au/Li4Ti5O12 spheres for high-rate lithium-ion batteries.
    Li CC; Li QH; Chen LB; Wang TH
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1233-8. PubMed ID: 22313873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile and rapid synthesis of highly porous wirelike TiO2 as anodes for lithium-ion batteries.
    Wang HE; Lu ZG; Xi LJ; Ma RG; Wang CD; Zapien JA; Bello I
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1608-13. PubMed ID: 22360340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.