These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21298139)

  • 21. Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2(B).
    Dylla AG; Lee JA; Stevenson KJ
    Langmuir; 2012 Feb; 28(5):2897-903. PubMed ID: 22225480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors.
    Wang G; Wang Q; Lu W; Li J
    J Phys Chem B; 2006 Nov; 110(43):22029-34. PubMed ID: 17064173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanotube-based hierarchical titanate microspheres: an improved anode structure for Li-ion batteries.
    Li J; Wan W; Zhu F; Li Q; Zhou H; Li J; Xu D
    Chem Commun (Camb); 2012 Jan; 48(3):389-91. PubMed ID: 22080339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alpha-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application.
    Ma H; Zhang S; Ji W; Tao Z; Chen J
    J Am Chem Soc; 2008 Apr; 130(15):5361-7. PubMed ID: 18366175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance.
    Su D; Kim HS; Kim WS; Wang G
    Chemistry; 2012 Jun; 18(26):8224-9. PubMed ID: 22589171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-limiting lithiation in silicon nanowires.
    Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T
    ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile fabrication of a three-dimensional cross-linking TiO2 nanowire network and its long-term cycling life for lithium storage.
    Hao Q; Chen L; Xu C
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10107-12. PubMed ID: 24911835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of size-tunable anatase TiO₂ nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance.
    Qiu Y; Yan K; Yang S; Jin L; Deng H; Li W
    ACS Nano; 2010 Nov; 4(11):6515-26. PubMed ID: 21038869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced high-rate performance of double-walled TiO2-B nanotubes as anodes in lithium-ion batteries.
    Qu J; Wu QD; Ren YR; Su Z; Lai C; Ding JN
    Chem Asian J; 2012 Nov; 7(11):2516-8. PubMed ID: 22945850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of uniform layered protonated titanate hierarchical spheres and their transformation to anatase TiO2 for lithium-ion batteries.
    Wu HB; Lou XW; Hng HH
    Chemistry; 2012 Feb; 18(7):2094-9. PubMed ID: 22246679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constructing Three-Dimensional Macroporous TiO
    He R; Liu Z; He P; Luo W; Yu R; Hong X; Pan X; Zhou Q; Mai L; Zhou L
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16528-16535. PubMed ID: 33792281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lithium transport at silicon thin film: barrier for high-rate capability anode.
    Peng B; Cheng F; Tao Z; Chen J
    J Chem Phys; 2010 Jul; 133(3):034701. PubMed ID: 20649344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.
    Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM
    Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrathin TiO
    Meng Y; Wang D; Zhao Y; Lian R; Wei Y; Bian X; Gao Y; Du F; Liu B; Chen G
    Nanoscale; 2017 Sep; 9(35):12934-12940. PubMed ID: 28831482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Length-controlled synthesis of oriented single-crystal rutile TiO2 nanowire arrays.
    Liu Y; Wang H; Li H; Zhao W; Liang C; Huang H; Deng Y; Shen H
    J Colloid Interface Sci; 2011 Nov; 363(2):504-10. PubMed ID: 21872878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries.
    Ko YD; Kang JG; Park JG; Lee S; Kim DW
    Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area.
    Dai XJ; Luo YS; Zhang WD; Fu SY
    Dalton Trans; 2010 Apr; 39(14):3426-32. PubMed ID: 20333334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries.
    Wu MS; Chiang PC; Lee JT; Lin JC
    J Phys Chem B; 2005 Dec; 109(49):23279-84. PubMed ID: 16375294
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.
    Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W
    ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.