These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21298147)

  • 21. Zinc(II) complexes of tripodal peptides mimicking the zinc(II)-coordination structure of carbonic anhydrase.
    Herr U; Spahl W; Trojandt G; Steglich W; Thaler F; van Eldik R
    Bioorg Med Chem; 1999 May; 7(5):699-707. PubMed ID: 10400322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII, and XIV with l- and d-histidine and crystallographic analysis of their adducts with isoform II: engineering proton-transfer processes within the active site of an enzyme.
    Temperini C; Scozzafava A; Vullo D; Supuran CT
    Chemistry; 2006 Sep; 12(27):7057-66. PubMed ID: 16807956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal poison inhibition of carbonic anhydrase.
    Lindahl M; Svensson LA; Liljas A
    Proteins; 1993 Feb; 15(2):177-82. PubMed ID: 8441752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding of cyanide, cyanate, and thiocyanate to human carbonic anhydrase II.
    Peng Z; Merz KM; Banci L
    Proteins; 1993 Oct; 17(2):203-16. PubMed ID: 8265567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides.
    Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR
    J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contributions of cysteine residues in Zn2 to zinc fingers and thiol-disulfide oxidoreductase activities of chaperone DnaJ.
    Shi YY; Tang W; Hao SF; Wang CC
    Biochemistry; 2005 Feb; 44(5):1683-9. PubMed ID: 15683252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-range solvent effects on the orbital interaction mechanism of water acidity enhancement in metal ion solutions: a comparative study of the electronic structure of aqueous Mg and Zn dications.
    Bernasconi L; Baerends EJ; Sprik M
    J Phys Chem B; 2006 Jun; 110(23):11444-53. PubMed ID: 16771418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystallographic analysis of Thr-200-->His human carbonic anhydrase II and its complex with the substrate, HCO3-.
    Xue Y; Vidgren J; Svensson LA; Liljas A; Jonsson BH; Lindskog S
    Proteins; 1993 Jan; 15(1):80-7. PubMed ID: 8451242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of a family of Cys2His2 zinc binding sites in the hydrophobic core of thioredoxin by structure-based design.
    Wisz MS; Garrett CZ; Hellinga HW
    Biochemistry; 1998 Jun; 37(23):8269-77. PubMed ID: 9622478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics simulations of human carbonic anhydrase II: insight into experimental results and the role of solvation.
    Lu D; Voth GA
    Proteins; 1998 Oct; 33(1):119-34. PubMed ID: 9741850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The missing link in COS metabolism: a model study on the reactivation of carbonic anhydrase from its hydrosulfide analogue.
    Notni J; Schenk S; Protoschill-Krebs G; Kesselmeier J; Anders E
    Chembiochem; 2007 Mar; 8(5):530-6. PubMed ID: 17304603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystallographic studies of inhibitor binding sites in human carbonic anhydrase II: a pentacoordinated binding of the SCN- ion to the zinc at high pH.
    Eriksson AE; Kylsten PM; Jones TA; Liljas A
    Proteins; 1988; 4(4):283-93. PubMed ID: 3151020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation analyses on binding affinity of substituted benzenesulfonamides with carbonic anhydrase using ab initio MO calculations on their complex structures.
    Yoshida T; Munei Y; Hitaoka S; Chuman H
    J Chem Inf Model; 2010 May; 50(5):850-60. PubMed ID: 20415451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Versatile trifunctional chemosensor of rhodamine derivative for Zn2+, Cu2+ and His/Cys in aqueous solution and living cells.
    Xu L; Xu Y; Zhu W; Zeng B; Yang C; Wu B; Qian X
    Org Biomol Chem; 2011 Dec; 9(24):8284-7. PubMed ID: 22051892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Possible roles for His 208 in the active-site region of chloroplast carbonic anhydrase from Pisum sativum.
    Björkbacka H; Johansson IM; Forsman C
    Arch Biochem Biophys; 1999 Jan; 361(1):17-24. PubMed ID: 9882424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamics of metal ion binding. 2. Metal ion binding by carbonic anhydrase variants.
    DiTusa CA; McCall KA; Christensen T; Mahapatro M; Fierke CA; Toone EJ
    Biochemistry; 2001 May; 40(18):5345-51. PubMed ID: 11330997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zinc solid-state NMR spectroscopy of human carbonic anhydrase: implications for the enzymatic mechanism.
    Lipton AS; Heck RW; Ellis PD
    J Am Chem Soc; 2004 Apr; 126(14):4735-9. PubMed ID: 15070393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The carboxylate shift in zinc enzymes: a computational study.
    Sousa SF; Fernandes PA; Ramos MJ
    J Am Chem Soc; 2007 Feb; 129(5):1378-85. PubMed ID: 17263422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and function of carbonic anhydrases from Mycobacterium tuberculosis.
    Suarez Covarrubias A; Larsson AM; Högbom M; Lindberg J; Bergfors T; Björkelid C; Mowbray SL; Unge T; Jones TA
    J Biol Chem; 2005 May; 280(19):18782-9. PubMed ID: 15753099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.