These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21298171)

  • 21. Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy.
    Walsh M; Tangney M; O'Neill MJ; Larkin JO; Soden DM; McKenna SL; Darcy R; O'Sullivan GC; O'Driscoll CM
    Mol Pharm; 2006; 3(6):644-53. PubMed ID: 17140252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theory and in vivo application of electroporative gene delivery.
    Somiari S; Glasspool-Malone J; Drabick JJ; Gilbert RA; Heller R; Jaroszeski MJ; Malone RW
    Mol Ther; 2000 Sep; 2(3):178-87. PubMed ID: 10985947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced electro-mediated gene delivery using carrier genes.
    Kim JA; Lee WG; Jung NC
    Bioelectrochemistry; 2010 Jun; 78(2):186-90. PubMed ID: 19783228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physical modelling of electroporation in close cell-to-cell proximity environments.
    Gaynor PT; Bodger PS
    Phys Med Biol; 2006 Jun; 51(12):3175-88. PubMed ID: 16757870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electroporation of cells using EM induction of ac fields by a magnetic stimulator.
    Chen C; Evans JA; Robinson MP; Smye SW; O'Toole P
    Phys Med Biol; 2010 Feb; 55(4):1219-29. PubMed ID: 20124654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles.
    He X; Nie H; Wang K; Tan W; Wu X; Zhang P
    Anal Chem; 2008 Dec; 80(24):9597-603. PubMed ID: 19007246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microscopic calculations of local lipid membrane permittivities and diffusion coefficients for application to electroporation analyses.
    Joshi RP; Sridhara V; Schoenbach KH
    Biochem Biophys Res Commun; 2006 Sep; 348(2):643-8. PubMed ID: 16890913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osmotically induced membrane tension facilitates the triggering of living cell electropermeabilization.
    Barrau C; Teissié J; Gabriel B
    Bioelectrochemistry; 2004 Jun; 63(1-2):327-32. PubMed ID: 15110297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Envelope-type lipid nanoparticles incorporating a short PEG-lipid conjugate for improved control of intracellular trafficking and transgene transcription.
    Masuda T; Akita H; Niikura K; Nishio T; Ukawa M; Enoto K; Danev R; Nagayama K; Ijiro K; Harashima H
    Biomaterials; 2009 Sep; 30(27):4806-14. PubMed ID: 19520424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell responses without receptors and ligands, using nanosecond pulsed electric fields (nsPEFs).
    Beebe SJ
    Int J Nanomedicine; 2013; 8():3401-4. PubMed ID: 24039422
    [No Abstract]   [Full Text] [Related]  

  • 31. Cellular recovery from electroporation using synchronisation modulation as a rescue model for electrically injured cells.
    Dando R; Chen W
    Burns; 2008 Dec; 34(8):1128-36. PubMed ID: 18508201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF).
    Pakhomov AG; Kolb JF; White JA; Joshi RP; Xiao S; Schoenbach KH
    Bioelectromagnetics; 2007 Dec; 28(8):655-63. PubMed ID: 17654532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation and experimental demonstration of the electric field assisted electroporation microchip for in vitro gene delivery enhancement.
    Lin YC; Li M; Wu CC
    Lab Chip; 2004 Apr; 4(2):104-8. PubMed ID: 15052348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin.
    Yadav AK; Mishra P; Mishra AK; Mishra P; Jain S; Agrawal GP
    Nanomedicine; 2007 Dec; 3(4):246-57. PubMed ID: 18068091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply.
    Wang HY; Lu C
    Biotechnol Bioeng; 2008 Jun; 100(3):579-86. PubMed ID: 18183631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrotransfection of mammalian cells using microchannel-type electroporation chip.
    Shin YS; Cho K; Kim JK; Lim SH; Park CH; Lee KB; Park Y; Chung C; Han DC; Chang JK
    Anal Chem; 2004 Dec; 76(23):7045-52. PubMed ID: 15571358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel PEGylation of chitosan nanoparticles for gene delivery.
    Zhang Y; Chen J; Zhang Y; Pan Y; Zhao J; Ren L; Liao M; Hu Z; Kong L; Wang J
    Biotechnol Appl Biochem; 2007 Apr; 46(Pt 4):197-204. PubMed ID: 17147512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electroporation of a lipid bilayer as a chemical reaction.
    Bier M; Gowrishankar TR; Chen W; Lee RC
    Bioelectromagnetics; 2004 Dec; 25(8):634-7. PubMed ID: 15515028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cationic and anionic lipoplexes inhibit gene transfection by electroporation in vivo.
    Mignet N; Vandermeulen G; Pembouong G; Largeau C; Thompson B; Spanedda MV; Wasungu L; Rols MP; Bessodes M; Bureau MF; Préat V; Scherman D
    J Gene Med; 2010 Jun; 12(6):491-500. PubMed ID: 20527042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.