BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 2129858)

  • 1. Motor learning in man: a positron emission tomographic study.
    Seitz RJ; Roland E; Bohm C; Greitz T; Stone-Elander S
    Neuroreport; 1990 Sep; 1(1):57-60. PubMed ID: 2129858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation for reaching: a PET study of the participating structures in the human brain.
    Decety J; Kawashima R; Gulyás B; Roland PE
    Neuroreport; 1992 Sep; 3(9):761-4. PubMed ID: 1421133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional anatomy of storage, recall, and recognition of a visual pattern in man.
    Roland PE; Gulyás B; Seitz RJ; Bohm C; Stone-Elander S
    Neuroreport; 1990 Sep; 1(1):53-6. PubMed ID: 2129857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study.
    Friston KJ; Frith CD; Passingham RE; Liddle PF; Frackowiak RS
    Proc Biol Sci; 1992 Jun; 248(1323):223-8. PubMed ID: 1354360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET.
    Boecker H; Dagher A; Ceballos-Baumann AO; Passingham RE; Samuel M; Friston KJ; Poline J; Dettmers C; Conrad B; Brooks DJ
    J Neurophysiol; 1998 Feb; 79(2):1070-80. PubMed ID: 9463462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography.
    Doyon J; Owen AM; Petrides M; Sziklas V; Evans AC
    Eur J Neurosci; 1996 Apr; 8(4):637-48. PubMed ID: 9081615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional mapping of human learning: a positron emission tomography activation study of eyeblink conditioning.
    Blaxton TA; Zeffiro TA; Gabrieli JD; Bookheimer SY; Carrillo MC; Theodore WH; Disterhoft JF
    J Neurosci; 1996 Jun; 16(12):4032-40. PubMed ID: 8656296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomy of motor learning. II. Subcortical structures and learning by trial and error.
    Jueptner M; Frith CD; Brooks DJ; Frackowiak RS; Passingham RE
    J Neurophysiol; 1997 Mar; 77(3):1325-37. PubMed ID: 9084600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training.
    Walz AD; Doppl K; Kaza E; Roschka S; Platz T; Lotze M
    Behav Brain Res; 2015 Feb; 278():393-403. PubMed ID: 25194587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term adaptation to dynamics of reaching movements: a PET study.
    Nezafat R; Shadmehr R; Holcomb HH
    Exp Brain Res; 2001 Sep; 140(1):66-76. PubMed ID: 11500799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies.
    Jueptner M; Weiller C
    Brain; 1998 Aug; 121 ( Pt 8)():1437-49. PubMed ID: 9712006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral structures participating in motor preparation in humans: a positron emission tomography study.
    Deiber MP; Ibañez V; Sadato N; Hallett M
    J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter-subject variability of cerebral activations in acquiring a motor skill: a study with positron emission tomography.
    Schlaug G; Knorr U; Seitz R
    Exp Brain Res; 1994; 98(3):523-34. PubMed ID: 8056072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skill learning.
    Doyon J
    Int Rev Neurobiol; 1997; 41():273-94. PubMed ID: 9378592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning.
    Doyon J; Penhune V; Ungerleider LG
    Neuropsychologia; 2003; 41(3):252-62. PubMed ID: 12457751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontal and parietal networks for conditional motor learning: a positron emission tomography study.
    Deiber MP; Wise SP; Honda M; Catalan MJ; Grafman J; Hallett M
    J Neurophysiol; 1997 Aug; 78(2):977-91. PubMed ID: 9307128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monkey brain activity modulated by reward preferences: a positron emission tomography study.
    Obayashi S; Nagai Y; Suhara T; Okauchi T; Inaji M; Iriki A; Maeda J
    Neurosci Res; 2009 Aug; 64(4):421-8. PubMed ID: 19416743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor subcircuits mediating the control of movement velocity: a PET study.
    Turner RS; Grafton ST; Votaw JR; Delong MR; Hoffman JM
    J Neurophysiol; 1998 Oct; 80(4):2162-76. PubMed ID: 9772269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DC-potential shifts and regional cerebral blood flow reveal frontal cortex involvement in human visuomotor learning.
    Lang W; Lang M; Podreka I; Steiner M; Uhl F; Suess E; Müller C; Deecke L
    Exp Brain Res; 1988; 71(2):353-64. PubMed ID: 3262531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.