These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 21298672)
1. High-throughput dielectrophoretic manipulation of bioparticles within fluids through biocompatible three-dimensional microelectrode array. Ma W; Shi T; Tang Z; Liu S; Malik R; Zhang L Electrophoresis; 2011 Feb; 32(5):494-505. PubMed ID: 21298672 [TBL] [Abstract][Full Text] [Related]
2. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111 [TBL] [Abstract][Full Text] [Related]
4. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
5. A novel approach to dielectrophoresis using carbon electrodes. Martinez-Duarte R; Renaud P; Madou MJ Electrophoresis; 2011 Sep; 32(17):2385-92. PubMed ID: 21792991 [TBL] [Abstract][Full Text] [Related]
6. Microfabrication technologies in dielectrophoresis applications--a review. Martinez-Duarte R Electrophoresis; 2012 Nov; 33(21):3110-32. PubMed ID: 22941778 [TBL] [Abstract][Full Text] [Related]
7. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Wiklund M; Günther C; Lemor R; Jäger M; Fuhr G; Hertz HM Lab Chip; 2006 Dec; 6(12):1537-44. PubMed ID: 17203158 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes. Jen CP; Weng CH; Huang CT Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653 [TBL] [Abstract][Full Text] [Related]
9. Integrated AC electrokinetic cell separation in a closed-loop device. Gagnon Z; Mazur J; Chang HC Lab Chip; 2010 Mar; 10(6):718-26. PubMed ID: 20221559 [TBL] [Abstract][Full Text] [Related]
10. Dielectrophoresis of lambda-DNA using 3D carbon electrodes. Martinez-Duarte R; Camacho-Alanis F; Renaud P; Ros A Electrophoresis; 2013 Apr; 34(7):1113-22. PubMed ID: 23348619 [TBL] [Abstract][Full Text] [Related]
11. Controlling two-dimensional movement of microparticles over an electrode array surface. Lin JT; Yeow JT; Wan W Biomed Microdevices; 2009 Feb; 11(1):193-200. PubMed ID: 18815885 [TBL] [Abstract][Full Text] [Related]
12. Optimal design of 3-D carbon microelectrode array for dielectrophoretic manipulation of nanoparticles in fluids. Tang Z; Malik R; Gong J; Shi T; Liu S J Nanosci Nanotechnol; 2011 Dec; 11(12):10433-7. PubMed ID: 22408921 [TBL] [Abstract][Full Text] [Related]
13. Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate. Cheng W; Li SZ; Zeng Q; Yu XL; Wang Y; Chan HL; Liu W; Guo SS; Zhao XZ Electrophoresis; 2011 Nov; 32(23):3371-7. PubMed ID: 22058049 [TBL] [Abstract][Full Text] [Related]
14. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis. Das D; Biswas K; Das S Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining. Zeinali S; Çetin B; Oliaei SN; Karpat Y Electrophoresis; 2015 Jul; 36(13):1432-42. PubMed ID: 25808433 [TBL] [Abstract][Full Text] [Related]
16. MEMS impedance flow cytometry designs for effective manipulation of micro entities in health care applications. Kumar M; Yadav S; Kumar A; Sharma NN; Akhtar J; Singh K Biosens Bioelectron; 2019 Oct; 142():111526. PubMed ID: 31362203 [TBL] [Abstract][Full Text] [Related]
17. Development of a new contactless dielectrophoresis system for active particle manipulation using movable liquid electrodes. Gwon HR; Chang ST; Choi CK; Jung JY; Kim JM; Lee SH Electrophoresis; 2014 Jul; 35(14):2014-21. PubMed ID: 24737601 [TBL] [Abstract][Full Text] [Related]
18. Carbon nanotube-sensor-integrated microfluidic platform for real-time chemical concentration detection. Yang L; Li M; Qu Y; Dong Z; Li WJ Electrophoresis; 2009 Sep; 30(18):3198-205. PubMed ID: 19722205 [TBL] [Abstract][Full Text] [Related]
19. Analytical solutions and validation of electric field and dielectrophoretic force in a bio-microfluidic channel. Nerguizian V; Alazzam A; Roman D; Stiharu I; Burnier M Electrophoresis; 2012 Feb; 33(3):426-35. PubMed ID: 22287173 [TBL] [Abstract][Full Text] [Related]
20. DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields. Gallo-Villanueva RC; Rodríguez-López CE; Díaz-de-la-Garza RI; Reyes-Betanzo C; Lapizco-Encinas BH Electrophoresis; 2009 Dec; 30(24):4195-205. PubMed ID: 20013902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]