BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21298716)

  • 1. Differential roles of metallothionein-like proteins in cadmium uptake and elimination by the scallop Chlamys nobilis.
    Liu F; Wang WX
    Environ Toxicol Chem; 2011 Mar; 30(3):738-46. PubMed ID: 21298716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallothionein-like proteins turnover, Cd and Zn biokinetics in the dietary Cd-exposed scallop Chlamys nobilis.
    Liu F; Wang WX
    Aquat Toxicol; 2011 Oct; 105(3-4):361-8. PubMed ID: 21820382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The subcellular fate of cadmium and zinc in the scallop Chlamys nobilis during waterborne and dietary metal exposure.
    Pan K; Wang WX
    Aquat Toxicol; 2008 Dec; 90(4):253-60. PubMed ID: 18992948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoupling of cadmium biokinetics and metallothionein turnover in a marine polychaete after metal exposure.
    Ng TY; Rainbow PS; Amiard-Triquet C; Amiard JC; Wang WX
    Aquat Toxicol; 2008 Aug; 89(1):47-54. PubMed ID: 18619682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-specific cadmium accumulation and metallothionein-like protein levels during acclimation process in the Chinese crab Eriocheir sinensis.
    Silvestre F; Duchêne C; Trausch G; Devos P
    Comp Biochem Physiol C Toxicol Pharmacol; 2005 Jan; 140(1):39-45. PubMed ID: 15792621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperaccumulation of cadmium by scallop Chlamys farreri revealed by comparative transcriptome analysis.
    Zhao Y; Kang X; Shang D; Ning J; Ding H; Zhai Y; Sheng X
    Biometals; 2020 Dec; 33(6):397-413. PubMed ID: 33011849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallothionein turnover, cytosolic distribution and the uptake of Cd by the green mussel Perna viridis.
    Ng TY; Rainbow PS; Amiard-Triquet C; Amiard JC; Wang WX
    Aquat Toxicol; 2007 Aug; 84(2):153-61. PubMed ID: 17640747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the cadmium-binding protein response of the digestive gland of the Yesso scallop Mizuhopecten yessoensis (Jay, 1857) for marine environmental assessments.
    Zhukovskaya A; Goryachev V; Zakhartsev M; Chelomin V
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):30986-30992. PubMed ID: 33594558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biokinetics and subcellular distribution of metals in Daphnia magna following Zn exposure: Implication for metal regulation.
    Zhao CM; Wang WX
    Sci Total Environ; 2019 Dec; 696():134004. PubMed ID: 31465922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and efflux of Cd and Zn by the green mussel Perna viridis after metal preexposure.
    Blackmore G; Wang WX
    Environ Sci Technol; 2002 Mar; 36(5):989-95. PubMed ID: 11918030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Zn pre-exposure on Cd and Zn bioaccumulation and metallothionein levels in two species of marine fish.
    Zhang L; Wang WX
    Aquat Toxicol; 2005 Jul; 73(4):353-69. PubMed ID: 15896856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources, bioaccumulation, and toxicity mechanisms of cadmium in Chlamys farreri.
    Liu H; Tian X; Jiang L; Han D; Hu S; Cui Y; Jiang F; Liu Y; Xu Y; Li H
    J Hazard Mater; 2023 Jul; 453():131395. PubMed ID: 37058935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical biomarker responses of green-lipped mussel, Perna canaliculus, to acute and subchronic waterborne cadmium toxicity.
    Chandurvelan R; Marsden ID; Gaw S; Glover CN
    Aquat Toxicol; 2013 Sep; 140-141():303-13. PubMed ID: 23876876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of biokinetic model of metals in the scallop Chlamys nobilis in complex field environments.
    Pan K; Wang WX
    Environ Sci Technol; 2008 Aug; 42(16):6285-90. PubMed ID: 18767700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccumulation and biotransformation of inorganic arsenic in zhikong scallop (Chlamys farreri) after waterborne exposure.
    Zhao Y; Kang X; Ding H; Ning J; Zhai Y; Sheng X
    Chemosphere; 2021 Aug; 277():130270. PubMed ID: 33770692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term metal accumulation and MTLP induction in the digestive glands of Perna virdis exposed to Zn and Cd.
    Long A; Li C; Chen S; Yan W; Dang A; Cheng Y; Lu D
    J Environ Sci (China); 2010; 22(7):975-81. PubMed ID: 21174986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of waterborne exposure to cadmium on biochemical responses in the freshwater gastropod, Bellamya aeruginosa.
    Yao J; Yang Z; Li H; Qu Y; Qiu B
    Ecotoxicol Environ Saf; 2020 Apr; 193():110365. PubMed ID: 32114244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn.
    Shi D; Wang WX
    Environ Pollut; 2004 Nov; 132(2):265-77. PubMed ID: 15312939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delineation of Pb contamination pathways in two Pectinidae: the variegated scallop Chlamys varia and the king scallop Pecten maximus.
    Metian M; Warnau M; Oberhänsli F; Bustamante P
    Sci Total Environ; 2009 May; 407(11):3503-9. PubMed ID: 19275952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative toxicity of cadmium in the commercial fish species Sparus aurata and Solea senegalensis.
    Kalman J; Riba I; Angel DelValls T; Blasco J
    Ecotoxicol Environ Saf; 2010 Mar; 73(3):306-11. PubMed ID: 19913912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.