BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21298810)

  • 1. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose.
    Buschke N; Schröder H; Wittmann C
    Biotechnol J; 2011 Mar; 6(3):306-17. PubMed ID: 21298810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
    Buschke N; Becker J; Schäfer R; Kiefer P; Biedendieck R; Wittmann C
    Biotechnol J; 2013 May; 8(5):557-70. PubMed ID: 23447448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-based production of the platform chemical 1,5-diaminopentane.
    Kind S; Wittmann C
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1287-96. PubMed ID: 21761208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum.
    Kind S; Jeong WK; Schröder H; Zelder O; Wittmann C
    Appl Environ Microbiol; 2010 Aug; 76(15):5175-80. PubMed ID: 20562290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane.
    Kind S; Jeong WK; Schröder H; Wittmann C
    Metab Eng; 2010 Jul; 12(4):341-51. PubMed ID: 20381632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular Optimization of a Hemicellulose-Utilizing Pathway in Corynebacterium glutamicum for Consolidated Bioprocessing of Hemicellulosic Biomass.
    Yim SS; Choi JW; Lee SH; Jeong KJ
    ACS Synth Biol; 2016 Apr; 5(4):334-43. PubMed ID: 26808593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H
    Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):691-9. PubMed ID: 18810427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Progress in biosythesis of diaminopentane].
    Li D; Li M; Wang H; Wang S; Lu F
    Sheng Wu Gong Cheng Xue Bao; 2014 Feb; 30(2):161-74. PubMed ID: 24941739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
    Radek A; Müller MF; Gätgens J; Eggeling L; Krumbach K; Marienhagen J; Noack S
    J Biotechnol; 2016 Aug; 231():160-166. PubMed ID: 27297548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter.
    Li M; Li D; Huang Y; Liu M; Wang H; Tang Q; Lu F
    J Ind Microbiol Biotechnol; 2014 Apr; 41(4):701-9. PubMed ID: 24510022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum.
    Kind S; Kreye S; Wittmann C
    Metab Eng; 2011 Sep; 13(5):617-27. PubMed ID: 21821142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of Corynebacterium glutamicum for Consolidated Conversion of Hemicellulosic Biomass into Xylonic Acid.
    Yim SS; Choi JW; Lee SH; Jeon EJ; Chung WJ; Jeong KJ
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28799725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering to improve 1,5-diaminopentane production from cellobiose using β-glucosidase-secreting Corynebacterium glutamicum.
    Matsuura R; Kishida M; Konishi R; Hirata Y; Adachi N; Segawa S; Imao K; Tanaka T; Kondo A
    Biotechnol Bioeng; 2019 Oct; 116(10):2640-2651. PubMed ID: 31184369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.
    Wang C; Zhang H; Cai H; Zhou Z; Chen Y; Chen Y; Ouyang P
    Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
    Meiswinkel TM; Gopinath V; Lindner SN; Nampoothiri KM; Wendisch VF
    Microb Biotechnol; 2013 Mar; 6(2):131-40. PubMed ID: 23164409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
    Gopinath V; Meiswinkel TM; Wendisch VF; Nampoothiri KM
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):985-96. PubMed ID: 21796382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
    Mimitsuka T; Sawai H; Hatsu M; Yamada K
    Biosci Biotechnol Biochem; 2007 Sep; 71(9):2130-5. PubMed ID: 17895539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.
    Kind S; Neubauer S; Becker J; Yamamoto M; Völkert M; Abendroth Gv; Zelder O; Wittmann C
    Metab Eng; 2014 Sep; 25():113-23. PubMed ID: 24831706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.