These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 21299046)
1. Interaction of soot derived multi-carbon nanoparticles with lung surfactants and their possible internalization inside alveolar cavity. Kumar P; Bohidar HB Indian J Exp Biol; 2010 Oct; 48(10):1037-42. PubMed ID: 21299046 [TBL] [Abstract][Full Text] [Related]
2. Effects of eicosane, a component of nanoparticles in diesel exhaust, on surface activity of pulmonary surfactant monolayers. Kanno S; Furuyama A; Hirano S Arch Toxicol; 2008 Nov; 82(11):841-50. PubMed ID: 18488198 [TBL] [Abstract][Full Text] [Related]
3. Rheological behavior and parameters of the in vitro model of lung surfactant systems: the role of the main phospholipid component. Antonova N; Todorov R; Exerowa D Biorheology; 2003; 40(5):531-43. PubMed ID: 12897419 [TBL] [Abstract][Full Text] [Related]
4. Lung Surfactant Decreases Biochemical Alterations and Oxidative Stress Induced by a Sub-Toxic Concentration of Carbon Nanoparticles in Alveolar Epithelial and Microglial Cells. Caruso G; Fresta CG; Costantino A; Lazzarino G; Amorini AM; Lazzarino G; Tavazzi B; Lunte SM; Dhar P; Gulisano M; Caraci F Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800016 [TBL] [Abstract][Full Text] [Related]
5. Lung surfactant dysfunction in tuberculosis: effect of mycobacterial tubercular lipids on dipalmitoylphosphatidylcholine surface activity. Chimote G; Banerjee R Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):215-23. PubMed ID: 16198543 [TBL] [Abstract][Full Text] [Related]
6. Interactions between DPPC as a component of lung surfactant and amorphous silica nanoparticles investigated by HILIC-ESI-MS. Silina YE; Welck J; Kraegeloh A; Koch M; Fink-Straube C J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Sep; 1029-1030():222-229. PubMed ID: 27442798 [TBL] [Abstract][Full Text] [Related]
7. Interactions of benzo[a]pyrene and diesel exhaust particulate matter with the lung surfactant system. Sosnowski TR; Koliński M; Gradón L Ann Occup Hyg; 2011 Apr; 55(3):329-38. PubMed ID: 21402870 [TBL] [Abstract][Full Text] [Related]
8. Water adsorption on oxidized single atomic vacancies present at the surface of small carbonaceous nanoparticles modeling soot. Oubal M; Picaud S; Rayez MT; Rayez JC Chemphyschem; 2010 Dec; 11(18):4088-96. PubMed ID: 21110375 [TBL] [Abstract][Full Text] [Related]
9. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
10. [A coagulative type of pulmonary surfactant depletion--a mechanism of damage to the pulmonary surfactant system]. Koga Y Hokkaido Igaku Zasshi; 1994 May; 69(3):434-44. PubMed ID: 7927172 [TBL] [Abstract][Full Text] [Related]
11. Effects of albumin and erythrocyte membranes on spread monolayers of lung surfactant lipids. Rachana R; Banerjee R Colloids Surf B Biointerfaces; 2006 Jun; 50(1):9-17. PubMed ID: 16650737 [TBL] [Abstract][Full Text] [Related]
12. New protocols for preparing dipalmitoylphosphatidylcholine dispersions and controlling surface tension and competitive adsorption with albumin at the air/aqueous interface. Kim SH; Franses EI Colloids Surf B Biointerfaces; 2005 Jul; 43(3-4):256-66. PubMed ID: 15979858 [TBL] [Abstract][Full Text] [Related]
13. Respiratory epithelial penetration and clearance of particle-borne benzo[a]pyrene. Gerde P; Muggenburg BA; Lundborg M; Tesfaigzi Y; Dahl AR Res Rep Health Eff Inst; 2001 Apr; (101):5-25; discussion 27-32. PubMed ID: 11488545 [TBL] [Abstract][Full Text] [Related]
14. Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4. Sáenz A; Cañadas O; Bagatolli LA; Johnson ME; Casals C FEBS J; 2006 Jun; 273(11):2515-27. PubMed ID: 16704424 [TBL] [Abstract][Full Text] [Related]
15. On the origin of iron-oxide nanoparticle formation using phospholipid membrane template. Sarkar R; Pal P; Mahato M; Kamilya T; Chaudhuri A; Talapatra GB Colloids Surf B Biointerfaces; 2010 Sep; 79(2):384-9. PubMed ID: 20493675 [TBL] [Abstract][Full Text] [Related]
16. Hysteresis behavior of amphiphilic model peptide in lung lipid monolayers at the air-water interface by an IRRAS measurement. Nakahara H; Dudek A; Nakamura Y; Lee S; Chang CH; Shibata O Colloids Surf B Biointerfaces; 2009 Jan; 68(1):61-7. PubMed ID: 18977123 [TBL] [Abstract][Full Text] [Related]
17. Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study. Hane F; Moores B; Amrein M; Leonenko Z Ultramicroscopy; 2009 Jul; 109(8):968-73. PubMed ID: 19398273 [TBL] [Abstract][Full Text] [Related]
18. Competitive adsorption of fibrinogen and dipalmitoylphosphatidylcholine at the air/aqueous interface. Kim SH; Franses EI J Colloid Interface Sci; 2006 Mar; 295(1):84-92. PubMed ID: 16115641 [TBL] [Abstract][Full Text] [Related]
19. Molecular interactions of cord factor with dipalmitoylphosphatidylcholine monolayers: implications for lung surfactant dysfunction in pulmonary tuberculosis. Chimote G; Banerjee R Colloids Surf B Biointerfaces; 2008 Aug; 65(1):120-5. PubMed ID: 18455914 [TBL] [Abstract][Full Text] [Related]
20. A facile and novel synthetic method for the preparation of hydroxyl capped fluorescent carbon nanoparticles. Khanam A; Tripathi SK; Roy D; Nasim M Colloids Surf B Biointerfaces; 2013 Feb; 102():63-9. PubMed ID: 23006553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]