These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 21299241)
1. Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Zhan J; Kolesnichenko I; Sunkara B; He J; McPherson GL; Piringer G; John VT Environ Sci Technol; 2011 Mar; 45(5):1949-54. PubMed ID: 21299241 [TBL] [Abstract][Full Text] [Related]
2. Modifying metal nanoparticle placement on carbon supports using an aerosol-based process, with application to the environmental remediation of chlorinated hydrocarbons. Sunkara B; Zhan J; Kolesnichenko I; Wang Y; He J; Holland JE; McPherson GL; John VT Langmuir; 2011 Jun; 27(12):7854-9. PubMed ID: 21612244 [TBL] [Abstract][Full Text] [Related]
3. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Zhang M; He F; Zhao D; Hao X Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362 [TBL] [Abstract][Full Text] [Related]
4. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Bennett P; He F; Zhao D; Aiken B; Feldman L J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350 [TBL] [Abstract][Full Text] [Related]
5. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. Kim H; Hong HJ; Jung J; Kim SH; Yang JW J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289 [TBL] [Abstract][Full Text] [Related]
6. Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Zhan J; Zheng T; Piringer G; Day C; McPherson GL; Lu Y; Papadopoulos K; John VT Environ Sci Technol; 2008 Dec; 42(23):8871-6. PubMed ID: 19192811 [TBL] [Abstract][Full Text] [Related]
7. Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. Wang W; Zhou M; Jin Z; Li T J Hazard Mater; 2010 Jan; 173(1-3):724-30. PubMed ID: 19773119 [TBL] [Abstract][Full Text] [Related]
8. Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron. Prommer H; Aziz LH; Bolaño N; Taubald H; Schüth C J Contam Hydrol; 2008 Apr; 97(1-2):13-26. PubMed ID: 18267347 [TBL] [Abstract][Full Text] [Related]
9. Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons. Velimirovic M; Larsson PO; Simons Q; Bastiaens L Chemosphere; 2013 Nov; 93(9):2040-5. PubMed ID: 23962383 [TBL] [Abstract][Full Text] [Related]
10. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design. Kaifas D; Malleret L; Kumar N; Fétimi W; Claeys-Bruno M; Sergent M; Doumenq P Sci Total Environ; 2014 May; 481():335-42. PubMed ID: 24607397 [TBL] [Abstract][Full Text] [Related]
11. Enhanced removal of pentachlorophenol by a novel composite: nanoscale zero valent iron immobilized on organobentonite. Li Y; Zhang Y; Li J; Zheng X Environ Pollut; 2011 Dec; 159(12):3744-9. PubMed ID: 21906860 [TBL] [Abstract][Full Text] [Related]
12. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe Phenrat T; Schoenfelder D; Kirschling TL; Tilton RD; Lowry GV Environ Sci Pollut Res Int; 2018 Mar; 25(8):7157-7169. PubMed ID: 26233743 [TBL] [Abstract][Full Text] [Related]
13. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification. Wang Q; Jeong SW; Choi H J Hazard Mater; 2012 Apr; 213-214():299-310. PubMed ID: 22386819 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene. Tseng HH; Su JG; Liang C J Hazard Mater; 2011 Aug; 192(2):500-6. PubMed ID: 21676545 [TBL] [Abstract][Full Text] [Related]
15. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept. Phenrat T; Thongboot T; Lowry GV Environ Sci Technol; 2016 Jan; 50(2):872-80. PubMed ID: 26654836 [TBL] [Abstract][Full Text] [Related]
16. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite. Ahmad A; Gu X; Li L; Lv S; Xu Y; Guo X Environ Sci Pollut Res Int; 2015 Nov; 22(22):17876-85. PubMed ID: 26162447 [TBL] [Abstract][Full Text] [Related]
17. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions. Cho Y; Choi SI Chemosphere; 2010 Nov; 81(7):940-5. PubMed ID: 20723967 [TBL] [Abstract][Full Text] [Related]
18. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis. VanStone N; Przepiora A; Vogan J; Lacrampe-Couloume G; Powers B; Perez E; Mabury S; Sherwood Lollar B J Contam Hydrol; 2005 Aug; 78(4):313-25. PubMed ID: 16026893 [TBL] [Abstract][Full Text] [Related]
19. Reductive dechlorination of activated carbon-adsorbed trichloroethylene by zero-valent iron: carbon as electron shuttle. Tang H; Zhu D; Li T; Kong H; Chen W J Environ Qual; 2011; 40(6):1878-85. PubMed ID: 22031571 [TBL] [Abstract][Full Text] [Related]
20. Follow-up study on the effects on well chemistry from biological and chemical remediation of chlorinated solvents. Scott D; Apblett A; Materer NF J Environ Monit; 2011 Sep; 13(9):2521-6. PubMed ID: 21769369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]