BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 21299659)

  • 1. Genome-wide atlas of transcription during maize development.
    Sekhon RS; Lin H; Childs KL; Hansey CN; Buell CR; de Leon N; Kaeppler SM
    Plant J; 2011 May; 66(4):553-63. PubMed ID: 21299659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress.
    Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ
    Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The family of maize D-type cyclins: genomic organization, phylogeny and expression patterns.
    Buendía-Monreal M; Rentería-Canett I; Guerrero-Andrade O; Bravo-Alberto CE; Martínez-Castilla LP; García E; Vázquez-Ramos JM
    Physiol Plant; 2011 Nov; 143(3):297-308. PubMed ID: 21707637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
    Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L
    J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA array profiling of gene expression changes during maize embryo development.
    Lee JM; Williams ME; Tingey SV; Rafalski JA
    Funct Integr Genomics; 2002 May; 2(1-2):13-27. PubMed ID: 12021847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation.
    Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F
    J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcript profiling during the early development of the maize brace root via Solexa sequencing.
    Li YJ; Fu YR; Huang JG; Wu CA; Zheng CC
    FEBS J; 2011 Jan; 278(1):156-66. PubMed ID: 21122072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings.
    Jia J; Fu J; Zheng J; Zhou X; Huai J; Wang J; Wang M; Zhang Y; Chen X; Zhang J; Zhao J; Su Z; Lv Y; Wang G
    Plant J; 2006 Dec; 48(5):710-27. PubMed ID: 17076806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of gene expression profiles during the kernel development of maize (Zea mays L.).
    Liu X; Fu J; Gu D; Liu W; Liu T; Peng Y; Wang J; Wang G
    Genomics; 2008 Apr; 91(4):378-87. PubMed ID: 18280698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between differential gene expression patterns in functional leaves of maize inbreds & hybrids at spikelet differentiation stage and heterosis.
    Tian ZY; Dai JR
    Yi Chuan Xue Bao; 2003 Feb; 30(2):154-62. PubMed ID: 12776604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb.
    Shen Y; Zhang Y; Chen J; Lin H; Zhao M; Peng H; Liu L; Yuan G; Zhang S; Zhang Z; Pan G
    Physiol Plant; 2013 Mar; 147(3):270-82. PubMed ID: 22747913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development.
    Dietrich CR; Perera MA; D Yandeau-Nelson M; Meeley RB; Nikolau BJ; Schnable PS
    Plant J; 2005 Jun; 42(6):844-61. PubMed ID: 15941398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microarray analysis of vegetative phase change in maize.
    Strable J; Borsuk L; Nettleton D; Schnable PS; Irish EE
    Plant J; 2008 Dec; 56(6):1045-57. PubMed ID: 18764925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic gene expression atlas covering the entire life cycle of rice.
    Wang L; Xie W; Chen Y; Tang W; Yang J; Ye R; Liu L; Lin Y; Xu C; Xiao J; Zhang Q
    Plant J; 2010 Mar; 61(5):752-66. PubMed ID: 20003165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint x Flint maize recombinant inbred line population.
    Shi C; Uzarowska A; Ouzunova M; Landbeck M; Wenzel G; Lübberstedt T
    BMC Genomics; 2007 Jan; 8():22. PubMed ID: 17233901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen.
    Skibbe DS; Doehlemann G; Fernandes J; Walbot V
    Science; 2010 Apr; 328(5974):89-92. PubMed ID: 20360107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential responses of maize MIP genes to salt stress and ABA.
    Zhu C; Schraut D; Hartung W; Schäffner AR
    J Exp Bot; 2005 Nov; 56(421):2971-81. PubMed ID: 16216844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship Between Differential Gene Expression and Heterosis During Ear Development in Maize (Zea mays L.).
    Wang X; Cao H; Zhang D; Li B; He Y; Li J; Wang S
    J Genet Genomics; 2007 Feb; 34(2):160-70. PubMed ID: 17469788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize.
    Jiang Y; Zeng B; Zhao H; Zhang M; Xie S; Lai J
    J Integr Plant Biol; 2012 Sep; 54(9):616-30. PubMed ID: 22862992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential gene expression analysis of maize leaf at heading stage in response to water-deficit stress.
    Yue G; Zhuang Y; Li Z; Sun L; Zhang J
    Biosci Rep; 2008 Jun; 28(3):125-34. PubMed ID: 18422487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.