These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 21299884)
21. Eugenol promotes functional recovery and alleviates inflammation, oxidative stress, and neural apoptosis in a rat model of spinal cord injury. Ma L; Mu Y; Zhang Z; Sun Q Restor Neurol Neurosci; 2018; 36(5):659-668. PubMed ID: 30040768 [TBL] [Abstract][Full Text] [Related]
22. Feasible stabilization of chondroitinase abc enables reduced astrogliosis in a chronic model of spinal cord injury. Raspa A; Bolla E; Cuscona C; Gelain F CNS Neurosci Ther; 2019 Jan; 25(1):86-100. PubMed ID: 29855151 [TBL] [Abstract][Full Text] [Related]
23. Examination of the combined effects of chondroitinase ABC, growth factors and locomotor training following compressive spinal cord injury on neuroanatomical plasticity and kinematics. Alluin O; Delivet-Mongrain H; Gauthier MK; Fehlings MG; Rossignol S; Karimi-Abdolrezaee S PLoS One; 2014; 9(10):e111072. PubMed ID: 25350665 [TBL] [Abstract][Full Text] [Related]
24. Implantation of human urine stem cells promotes neural repair in spinal cord injury rats associated cadeharin-1 and integrin subunit beta 1 expression. Chen JL; Li N; Xu M; Wang L; Sun J; Li Liu ; Wang YF; Zhang BL; Suo HY; Wang TH; Wang F J Gene Med; 2024 Jan; 26(1):e3615. PubMed ID: 38123364 [TBL] [Abstract][Full Text] [Related]
25. Acute molecular perturbation of inducible nitric oxide synthase with an antisense approach enhances neuronal preservation and functional recovery after contusive spinal cord injury. Maggio DM; Chatzipanteli K; Masters N; Patel SP; Dietrich WD; Pearse DD J Neurotrauma; 2012 Aug; 29(12):2244-9. PubMed ID: 22708918 [TBL] [Abstract][Full Text] [Related]
26. Electroacupuncture promotes the repair of the damaged spinal cord in mice by mediating neurocan-perineuronal net. Hu R; He K; Chen B; Chen Y; Zhang J; Wu X; Shi M; Wu L; Ma R CNS Neurosci Ther; 2024 Jan; 30(1):e14468. PubMed ID: 37950551 [TBL] [Abstract][Full Text] [Related]
27. Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl‑2 and Bax pathway. Luo Y; Fu C; Wang Z; Zhang Z; Wang H; Liu Y Mol Med Rep; 2015 Nov; 12(5):7132-8. PubMed ID: 26324384 [TBL] [Abstract][Full Text] [Related]
28. Chondroitinase ABC treatment and the phenotype of neural progenitor cells isolated from injured rat spinal cord. Slovinská L; Novotná I; Cížková D Physiol Res; 2011; 60(4):705-8. PubMed ID: 21574751 [TBL] [Abstract][Full Text] [Related]
29. [Effects of human urine-derived stem cells combined with chondroitinase ABC on the expressions of nerve growth factor and brain-derived neurotrophic factor in the spinal cord injury]. Li Z; Wu H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2017 Nov; 31(11):1377-1383. PubMed ID: 29798595 [TBL] [Abstract][Full Text] [Related]
30. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats. Zhang C; Zhang G; Rong W; Wang A; Wu C; Huo X Neuroscience; 2015 Apr; 291():260-71. PubMed ID: 25701712 [TBL] [Abstract][Full Text] [Related]
31. Combine effect of Chondroitinase ABC and low level laser (660nm) on spinal cord injury model in adult male rats. Janzadeh A; Sarveazad A; Yousefifard M; Dameni S; Samani FS; Mokhtarian K; Nasirinezhad F Neuropeptides; 2017 Oct; 65():90-99. PubMed ID: 28716393 [TBL] [Abstract][Full Text] [Related]
33. Effects of calcitriol on experimental spinal cord injury in rats. Zhou KL; Chen DH; Jin HM; Wu K; Wang XY; Xu HZ; Zhang XL Spinal Cord; 2016 Jul; 54(7):510-6. PubMed ID: 26729579 [TBL] [Abstract][Full Text] [Related]
34. Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury. Lee JS; Yang CC; Kuo YM; Sze CI; Hsu JY; Huang YH; Tzeng SF; Tsai CL; Chen HH; Jou IM Spine (Phila Pa 1976); 2012 Jan; 37(1):10-7. PubMed ID: 22024901 [TBL] [Abstract][Full Text] [Related]
35. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats. Samantaray S; Das A; Matzelle DC; Yu SP; Wei L; Varma A; Ray SK; Banik NL J Neurochem; 2016 May; 137(4):604-17. PubMed ID: 26998684 [TBL] [Abstract][Full Text] [Related]
36. Local delivery of chondroitinase ABC with or without stromal cell-derived factor 1α promotes functional repair in the injured rat spinal cord. Pakulska MM; Tator CH; Shoichet MS Biomaterials; 2017 Jul; 134():13-21. PubMed ID: 28453954 [TBL] [Abstract][Full Text] [Related]
37. Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction. Andrabi SS; Yang J; Gao Y; Kuang Y; Labhasetwar V J Control Release; 2020 Jan; 317():300-311. PubMed ID: 31805339 [TBL] [Abstract][Full Text] [Related]
38. Beneficial effects of modest systemic hypothermia on locomotor function and histopathological damage following contusion-induced spinal cord injury in rats. Yu CG; Jimenez O; Marcillo AE; Weider B; Bangerter K; Dietrich WD; Castro S; Yezierski RP J Neurosurg; 2000 Jul; 93(1 Suppl):85-93. PubMed ID: 10879763 [TBL] [Abstract][Full Text] [Related]
39. Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β-catenin signaling pathway after spinal cord injury. Gao K; Shen Z; Yuan Y; Han D; Song C; Guo Y; Mei X J Neurochem; 2016 Jul; 138(1):139-49. PubMed ID: 26443048 [TBL] [Abstract][Full Text] [Related]
40. Combined treatment with enteric neural stem cells and chondroitinase ABC reduces spinal cord lesion pathology. Jevans B; James ND; Burnside E; McCann CJ; Thapar N; Bradbury EJ; Burns AJ Stem Cell Res Ther; 2021 Jan; 12(1):10. PubMed ID: 33407795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]