BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21300042)

  • 1. Bioinformatic and biochemical characterization of DCXR and DHRS2/4 from Caenorhabditis elegans.
    Kisiela M; El-Hawari Y; Martin HJ; Maser E
    Chem Biol Interact; 2011 May; 191(1-3):75-82. PubMed ID: 21300042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and functional evolution of human DHRS2 and DHRS4 duplicated genes.
    Gabrielli F; Tofanelli S
    Gene; 2012 Dec; 511(2):461-9. PubMed ID: 23036705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DHS-21, a dicarbonyl/L-xylulose reductase (DCXR) ortholog, regulates longevity and reproduction in Caenorhabditis elegans.
    Son le T; Ko KM; Cho JH; Singaravelu G; Chatterjee I; Choi TW; Song HO; Yu JR; Park BJ; Lee SK; Ahnn J
    FEBS Lett; 2011 May; 585(9):1310-6. PubMed ID: 21477590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dicarbonyl/l-xylulose reductase (DCXR): The multifunctional pentosuria enzyme.
    Lee SK; Son le T; Choi HJ; Ahnn J
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2563-7. PubMed ID: 23988570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis.
    El-Hawari Y; Favia AD; Pilka ES; Kisiela M; Oppermann U; Martin HJ; Maser E
    Chem Biol Interact; 2009 Mar; 178(1-3):234-41. PubMed ID: 19061875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (-)-Epigallocatechin-3-gallate, a potential inhibitor to human dicarbonyl/L-xylulose reductase.
    Hu XH; Ding LY; Huang WX; Yang XM; Xie F; Xu M; Yu L
    J Biochem; 2013 Aug; 154(2):167-75. PubMed ID: 23661708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and catalytic characterization of a recombinant tropine biosynthetic tropinone reductase from Withania coagulans leaf.
    Kushwaha AK; Sangwan NS; Tripathi S; Sangwan RS
    Gene; 2013 Mar; 516(2):238-47. PubMed ID: 23266822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of Caenorhabditis elegans NTH, a homolog of human endonuclease III: essential role of N-terminal region.
    Morinaga H; Yonekura S; Nakamura N; Sugiyama H; Yonei S; Zhang-Akiyama QM
    DNA Repair (Amst); 2009 Jul; 8(7):844-51. PubMed ID: 19481506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caenorhabditis elegans has two genes encoding functional d-aspartate oxidases.
    Katane M; Seida Y; Sekine M; Furuchi T; Homma H
    FEBS J; 2007 Jan; 274(1):137-49. PubMed ID: 17140416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, expression, functional validation and modeling of cinnamyl alcohol dehydrogenase isolated from xylem of Leucaena leucocephala.
    Pandey B; Pandey VP; Dwivedi UN
    Protein Expr Purif; 2011 Oct; 79(2):197-203. PubMed ID: 21708267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of mammalian dicarbonyl/L-xylulose reductase and its localization in kidney.
    Nakagawa J; Ishikura S; Asami J; Isaji T; Usami N; Hara A; Sakurai T; Tsuritani K; Oda K; Takahashi M; Yoshimoto M; Otsuka N; Kitamura K
    J Biol Chem; 2002 May; 277(20):17883-91. PubMed ID: 11882650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Caenorhabditis elegans isovaleryl-CoA dehydrogenase and structural comparison with other acyl-CoA dehydrogenases.
    Mohsen AW; Navarette B; Vockley J
    Mol Genet Metab; 2001 Jun; 73(2):126-37. PubMed ID: 11386848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human DCXR - another 'moonlighting protein' involved in sugar metabolism, carbonyl detoxification, cell adhesion and male fertility?
    Ebert B; Kisiela M; Maser E
    Biol Rev Camb Philos Soc; 2015 Feb; 90(1):254-78. PubMed ID: 24720935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human microsomal carbonyl reducing enzymes in the metabolism of xenobiotics: well-known and promising members of the SDR superfamily.
    Skarydová L; Wsól V
    Drug Metab Rev; 2012 May; 44(2):173-91. PubMed ID: 22181347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional divergence of short-chain dehydrogenases involved in tropinone reduction.
    Brock A; Brandt W; Dräger B
    Plant J; 2008 May; 54(3):388-401. PubMed ID: 18221363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic characterization of Tv-ant-1, a Caenorhabditis elegans tag-61 homologue from the parasitic nematode Trichostrongylus vitrinus.
    Hu M; Campbell BE; Pellegrino M; Loukas A; Beveridge I; Ranganathan S; Gasser RB
    Gene; 2007 Aug; 397(1-2):12-25. PubMed ID: 17512141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunoglobulin superfamily proteins in Caenorhabditis elegans.
    Teichmann SA; Chothia C
    J Mol Biol; 2000 Mar; 296(5):1367-83. PubMed ID: 10698639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of the NADH pyrophosphatases from Caenorhabditis elegans and Saccharomyces cerevisiae, members of a Nudix hydrolase subfamily.
    Xu W; Dunn CA; Bessman MJ
    Biochem Biophys Res Commun; 2000 Jul; 273(2):753-8. PubMed ID: 10873676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatic identification and characterization of new members of short-chain dehydrogenase/reductase superfamily.
    Keller B; Volkmann A; Wilckens T; Moeller G; Adamski J
    Mol Cell Endocrinol; 2006 Mar; 248(1-2):56-60. PubMed ID: 16406282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models.
    Kallberg Y; Oppermann U; Persson B
    FEBS J; 2010 May; 277(10):2375-86. PubMed ID: 20423462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.