These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 21300068)
1. Interaction of the Bacillus thuringiensis delta endotoxins Cry1Ac and Cry3Aa with the gut of the pea aphid, Acyrthosiphon pisum (Harris). Li H; Chougule NP; Bonning BC J Invertebr Pathol; 2011 May; 107(1):69-78. PubMed ID: 21300068 [TBL] [Abstract][Full Text] [Related]
2. Intramolecular proteolytic nicking and binding of Bacillus thuringiensis Cry8Da toxin in BBMVs of Japanese beetle. Yamaguchi T; Sahara K; Bando H; Asano S J Invertebr Pathol; 2010 Nov; 105(3):243-7. PubMed ID: 20655921 [TBL] [Abstract][Full Text] [Related]
3. Modification of Cry4Aa toward Improved Toxin Processing in the Gut of the Pea Aphid, Acyrthosiphon pisum. Rausch MA; Chougule NP; Deist BR; Bonning BC PLoS One; 2016; 11(5):e0155466. PubMed ID: 27171411 [TBL] [Abstract][Full Text] [Related]
4. Binding of Bacillus thuringiensis Cry1A toxins to brush border membrane vesicles of midgut from Cry1Ac susceptible and resistant Plutella xylostella. Higuchi M; Haginoya K; Yamazaki T; Miyamoto K; Katagiri T; Tomimoto K; Shitomi Y; Hayakawa T; Sato R; Hori H Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):716-24. PubMed ID: 17543562 [TBL] [Abstract][Full Text] [Related]
6. Disruption of Ha_BtR alters binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to midgut BBMVs of Helicoverpa armigera. Xu X; Wu Y J Invertebr Pathol; 2008 Jan; 97(1):27-32. PubMed ID: 17681529 [TBL] [Abstract][Full Text] [Related]
7. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Peng D; Xu X; Ruan L; Yu Z; Sun M Res Microbiol; 2010 Jun; 161(5):383-9. PubMed ID: 20438837 [TBL] [Abstract][Full Text] [Related]
8. Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment. Liu C; Wu K; Wu Y; Gao Y; Ning C; Oppert B J Insect Physiol; 2009 Aug; 55(8):686-93. PubMed ID: 19446559 [TBL] [Abstract][Full Text] [Related]
9. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Burton SL; Ellar DJ; Li J; Derbyshire DJ J Mol Biol; 1999 Apr; 287(5):1011-22. PubMed ID: 10222207 [TBL] [Abstract][Full Text] [Related]
10. Effects of Bacillus thuringiensis delta-endotoxins on the pea aphid (Acyrthosiphon pisum). Porcar M; Grenier AM; Federici B; Rahbé Y Appl Environ Microbiol; 2009 Jul; 75(14):4897-900. PubMed ID: 19447954 [TBL] [Abstract][Full Text] [Related]
11. Increased toxicity of Bacillus thuringiensis Cry3Aa against Crioceris quatuordecimpunctata, Phaedon brassicae and Colaphellus bowringi by a Tenebrio molitor cadherin fragment. Gao Y; Jurat-Fuentes JL; Oppert B; Fabrick JA; Liu C; Gao J; Lei Z Pest Manag Sci; 2011 Sep; 67(9):1076-81. PubMed ID: 21495115 [TBL] [Abstract][Full Text] [Related]
12. Ephestia kuehniella tolerance to Bacillus thuringiensis Cry1Aa is associated with reduced oligomer formation. Chakroun M; Sellami S; Ferré J; Tounsi S; Rouis S Biochem Biophys Res Commun; 2017 Jan; 482(4):808-813. PubMed ID: 27888109 [TBL] [Abstract][Full Text] [Related]
13. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Ma G; Roberts H; Sarjan M; Featherstone N; Lahnstein J; Akhurst R; Schmidt O Insect Biochem Mol Biol; 2005 Jul; 35(7):729-39. PubMed ID: 15894190 [TBL] [Abstract][Full Text] [Related]
14. Effects of Manduca sexta allatostatin and an analog on the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) and degradation by enzymes from the aphid gut. Down RE; Matthews HJ; Audsley N Peptides; 2010 Mar; 31(3):489-97. PubMed ID: 19560498 [TBL] [Abstract][Full Text] [Related]
15. Development and mechanisms of resistance to Bacillus thuringiensis endotoxin Cry1Ac in the American bollworm, Helicoverpa armigera (Hübner). Chandrashekar K; Gujar GT Indian J Exp Biol; 2004 Feb; 42(2):164-73. PubMed ID: 15282949 [TBL] [Abstract][Full Text] [Related]
16. Bt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape in laboratory conditions. Burgio G; Dinelli G; Marotti I; Zurla M; Bosi S; Lanzoni A Bull Entomol Res; 2011 Apr; 101(2):241-7. PubMed ID: 21034523 [TBL] [Abstract][Full Text] [Related]
17. Inconsistencies in determining Bacillus thuringiensis toxin binding sites relationship by comparing competition assays with ligand blotting. Lee MK; Dean DH Biochem Biophys Res Commun; 1996 Mar; 220(3):575-80. PubMed ID: 8607806 [TBL] [Abstract][Full Text] [Related]
18. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis. Rodrigo-Simón A; de Maagd RA; Avilla C; Bakker PL; Molthoff J; González-Zamora JE; Ferré J Appl Environ Microbiol; 2006 Feb; 72(2):1595-603. PubMed ID: 16461715 [TBL] [Abstract][Full Text] [Related]
19. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508 [TBL] [Abstract][Full Text] [Related]
20. Prohibitin, an essential protein for Colorado potato beetle larval viability, is relevant to Bacillus thuringiensis Cry3Aa toxicity. Ochoa-Campuzano C; Martínez-Ramírez AC; Contreras E; Rausell C; Real MD Pestic Biochem Physiol; 2013 Nov; 107(3):299-308. PubMed ID: 24267691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]