These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 21300183)

  • 1. Proteomic identification of rhythmic proteins in rice seedlings.
    Hwang H; Cho MH; Hahn BS; Lim H; Kwon YK; Hahn TR; Bhoo SH
    Biochim Biophys Acta; 2011 Apr; 1814(4):470-9. PubMed ID: 21300183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains.
    Xu SB; Li T; Deng ZY; Chong K; Xue Y; Wang T
    Plant Physiol; 2008 Oct; 148(2):908-25. PubMed ID: 18753281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian cycles of gene expression in the coral, Acropora millepora.
    Brady AK; Snyder KA; Vize PD
    PLoS One; 2011; 6(9):e25072. PubMed ID: 21949855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Phosphatase (
    Waqas M; Feng S; Amjad H; Letuma P; Zhan W; Li Z; Fang C; Arafat Y; Khan MU; Tayyab M; Lin W
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30235789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Analysis of Cold Stress Response and Diurnal Rhythm Using Transcriptome Data in Rice Reveals the Molecular Networks Related to Various Biological Processes.
    Hong WJ; Jiang X; Ahn HR; Choi J; Kim SR; Jung KH
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32961678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diurnal RNAPII-tethered chromatin interactions are associated with rhythmic gene expression in rice.
    Deng L; Gao B; Zhao L; Zhang Y; Zhang Q; Guo M; Yang Y; Wang S; Xie L; Lou H; Ma M; Zhang W; Cao Z; Zhang Q; McClung CR; Li G; Li X
    Genome Biol; 2022 Jan; 23(1):7. PubMed ID: 34991658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of plant protein solubilization and 2-DE gel resolution through optimization of the concentration of Tris in the solubilization buffer.
    Cho JH; Cho MH; Hwang H; Bhoo SH; Hahn TR
    Mol Cells; 2010 Jun; 29(6):611-6. PubMed ID: 20496115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal-Rhythmic Relationships between Physiological Parameters and Photosynthesis- and Antioxidant-Enzyme Genes Expression in the Raphidophyte
    Mukai K; Qiu X; Takai Y; Yasuo S; Oshima Y; Shimasaki Y
    Antioxidants (Basel); 2024 Jun; 13(7):. PubMed ID: 39061850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein phosphorylation differs significantly among ontogenetic phases in Malus seedlings.
    Wang Y; Wang Y; Zhao YB; Chen DM; Han ZH; Zhang XZ
    Proteome Sci; 2014; 12():31. PubMed ID: 24904238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human genetic variation determines 24-hour rhythmic gene expression and disease risk.
    Guan D; Chen Y; Liu P; Sabo A
    Res Sq; 2024 Aug; ():. PubMed ID: 39149455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochromes and Their Role in Diurnal Variations of ROS Metabolism and Plant Proteome.
    Luklová M; Novák J; Kopecká R; Kameniarová M; Gibasová V; Brzobohatý B; Černý M
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of rhythmic metabolome and transcriptome provides insights into the transmission of rhythmic fluctuations and temporal diversity of metabolism in rice.
    Zhou J; Liu C; Chen Q; Liu L; Niu S; Chen R; Li K; Sun Y; Shi Y; Yang C; Shen S; Li Y; Xing J; Yuan H; Liu X; Fang C; Fernie AR; Luo J
    Sci China Life Sci; 2022 Sep; 65(9):1794-1810. PubMed ID: 35287184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal Regulation of the Metabolome and Proteome in Photosynthetic and Photorespiratory Pathways Contributes to Maize Heterosis.
    Li Z; Zhu A; Song Q; Chen HY; Harmon FG; Chen ZJ
    Plant Cell; 2020 Dec; 32(12):3706-3722. PubMed ID: 33004616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian and Sleep Metabolomics Across Species.
    Malik DM; Paschos GK; Sehgal A; Weljie AM
    J Mol Biol; 2020 May; 432(12):3578-3610. PubMed ID: 32376454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Post-Translational Modifications of Crop Proteins under Abiotic Stress.
    Hashiguchi A; Komatsu S
    Proteomes; 2016 Dec; 4(4):. PubMed ID: 28248251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems Biology-Derived Discoveries of Intrinsic Clocks.
    Millius A; Ueda HR
    Front Neurol; 2017; 8():25. PubMed ID: 28220104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE.
    Choudhary MK; Nomura Y; Shi H; Nakagami H; Somers DE
    Front Plant Sci; 2016; 7():1007. PubMed ID: 27462335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms synchronise intracellular calcium dynamics and ATP production for facilitating Arabidopsis pollen tube growth.
    Yue X; Gao XQ; Zhang XS
    Plant Signal Behav; 2015; 10(5):e1017699. PubMed ID: 26039479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA around the clock - regulation at the RNA level in biological timing.
    Nolte C; Staiger D
    Front Plant Sci; 2015; 6():311. PubMed ID: 25999975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sample preparation for phosphoproteomic analysis of circadian time series in Arabidopsis thaliana.
    Krahmer J; Hindle MM; Martin SF; Le Bihan T; Millar AJ
    Methods Enzymol; 2015; 551():405-31. PubMed ID: 25662467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.