These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 21300358)
1. Finite element simulations of a focal knee resurfacing implant applied to localized cartilage defects in a sheep model. Manda K; Ryd L; Eriksson A J Biomech; 2011 Mar; 44(5):794-801. PubMed ID: 21300358 [TBL] [Abstract][Full Text] [Related]
2. Time-dependent behavior of cartilage surrounding a metal implant for full-thickness cartilage defects of various sizes: a finite element study. Manda K; Eriksson A Biomech Model Mechanobiol; 2012 May; 11(5):731-42. PubMed ID: 21898100 [TBL] [Abstract][Full Text] [Related]
3. Predicting the effects of knee focal articular surface injury with a patient-specific finite element model. Papaioannou G; Demetropoulos CK; King YH Knee; 2010 Jan; 17(1):61-8. PubMed ID: 19477131 [TBL] [Abstract][Full Text] [Related]
4. An articular cartilage contact model based on real surface geometry. Han SK; Federico S; Epstein M; Herzog W J Biomech; 2005 Jan; 38(1):179-84. PubMed ID: 15519355 [TBL] [Abstract][Full Text] [Related]
5. Cartilage thickness distribution affects computational model predictions of cervical spine facet contact parameters. Womack W; Ayturk UM; Puttlitz CM J Biomech Eng; 2011 Jan; 133(1):011009. PubMed ID: 21186899 [TBL] [Abstract][Full Text] [Related]
6. Implant size and mechanical properties influence the failure of the adhesive bond between cartilage implants and native tissue in a finite element analysis. Vahdati A; Wagner DR J Biomech; 2013 May; 46(9):1554-60. PubMed ID: 23618130 [TBL] [Abstract][Full Text] [Related]
7. Cartilage damage caused by metal implants applied for the treatment of established localized cartilage defects in a rabbit model. Custers RJ; Creemers LB; van Rijen MH; Verbout AJ; Saris DB; Dhert WJ J Orthop Res; 2009 Jan; 27(1):84-90. PubMed ID: 18634008 [TBL] [Abstract][Full Text] [Related]
8. Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation. Peña E; Calvo B; Martínez MA; Doblaré M Comput Biol Med; 2007 Mar; 37(3):376-87. PubMed ID: 16796999 [TBL] [Abstract][Full Text] [Related]
9. Cartilage Health in Knees Treated with Metal Resurfacing Implants or Untreated Focal Cartilage Lesions: A Preclinical Study in Sheep. Martinez-Carranza N; Hultenby K; Lagerstedt AS; Schupbach P; Berg HE Cartilage; 2019 Jan; 10(1):120-128. PubMed ID: 28703030 [TBL] [Abstract][Full Text] [Related]
10. Monopolar radiofrequency treatment of partial-thickness cartilage defects in the sheep knee joint leads to extended cartilage injury. Kääb MJ; Bail HJ; Rotter A; Mainil-Varlet P; apGwynn I; Weiler A Am J Sports Med; 2005 Oct; 33(10):1472-8. PubMed ID: 16009983 [TBL] [Abstract][Full Text] [Related]
11. Influence of an interpositional spacer on the behaviour of the tibiofemoral joint: a finite element study. Checa S; Taylor M; New A Clin Biomech (Bristol); 2008 Oct; 23(8):1044-52. PubMed ID: 18499317 [TBL] [Abstract][Full Text] [Related]
12. Modeling of constrained articular cartilage growth in an intact knee with focal knee resurfacing metal implant. Manda K; Eriksson A Biomech Model Mechanobiol; 2014 Jun; 13(3):599-613. PubMed ID: 23955432 [TBL] [Abstract][Full Text] [Related]
13. Effects of a surface matching articular resurfacing device on tibiofemoral contact pressure: results from continuous dynamic flexion-extension cycles. Becher C; Huber R; Thermann H; Ezechieli L; Ostermeier S; Wellmann M; von Skrbensky G Arch Orthop Trauma Surg; 2011 Mar; 131(3):413-9. PubMed ID: 20967546 [TBL] [Abstract][Full Text] [Related]
14. Treatment of full thickness focal cartilage lesions with a metallic resurfacing implant in a sheep animal model, 1 year evaluation. Martinez-Carranza N; Ryd L; Hultenby K; Hedlund H; Nurmi-Sandh H; Lagerstedt AS; Schupbach P; Berg HE Osteoarthritis Cartilage; 2016 Mar; 24(3):484-93. PubMed ID: 26403063 [TBL] [Abstract][Full Text] [Related]
15. A novel method for determining articular cartilage chondrocyte mechanics in vivo. Abusara Z; Seerattan R; Leumann A; Thompson R; Herzog W J Biomech; 2011 Mar; 44(5):930-4. PubMed ID: 21145552 [TBL] [Abstract][Full Text] [Related]
16. Effects of the material properties of a focal knee articular prosthetic on the human knee joint using computational simulation. Koh YG; Lee JA; Kim PS; Kim HJ; Kang K; Kang KT Knee; 2020 Oct; 27(5):1484-1491. PubMed ID: 33010765 [TBL] [Abstract][Full Text] [Related]
17. Focal knee resurfacing and effects of surgical precision on opposing cartilage. A pilot study on 12 sheep. Martinez-Carranza N; Berg HE; Hultenby K; Nurmi-Sandh H; Ryd L; Lagerstedt AS Osteoarthritis Cartilage; 2013 May; 21(5):739-45. PubMed ID: 23428602 [TBL] [Abstract][Full Text] [Related]
18. Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects. Shirazi R; Shirazi-Adl A J Biomech; 2009 Nov; 42(15):2458-65. PubMed ID: 19660759 [TBL] [Abstract][Full Text] [Related]
19. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. Cao L; Youn I; Guilak F; Setton LA J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764 [TBL] [Abstract][Full Text] [Related]