These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 21300396)
1. Leaching of Cu and Zn from discarded boat paint particles into tap water and rain water. Jessop A; Turner A Chemosphere; 2011 Jun; 83(11):1575-80. PubMed ID: 21300396 [TBL] [Abstract][Full Text] [Related]
2. Leaching of copper and zinc from spent antifouling paint particles. Singh N; Turner A Environ Pollut; 2009 Feb; 157(2):371-6. PubMed ID: 19013700 [TBL] [Abstract][Full Text] [Related]
3. Antifouling biocides in discarded marine paint particles. Parks R; Donnier-Marechal M; Frickers PE; Turner A; Readman JW Mar Pollut Bull; 2010 Aug; 60(8):1226-30. PubMed ID: 20381093 [TBL] [Abstract][Full Text] [Related]
4. Leaching of hydrophobic Cu and Zn from discarded marine antifouling paint residues: evidence for transchelation of metal pyrithiones. Holmes L; Turner A Environ Pollut; 2009 Dec; 157(12):3440-4. PubMed ID: 19616352 [TBL] [Abstract][Full Text] [Related]
5. Impacts of boat paint chips on the distribution and availability of copper in an English ria. Turner A; Fitzer S; Glegg GA Environ Pollut; 2008 Jan; 151(1):176-81. PubMed ID: 17418467 [TBL] [Abstract][Full Text] [Related]
6. Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca. Turner A; Pollock H; Brown MT Environ Pollut; 2009; 157(8-9):2314-9. PubMed ID: 19375205 [TBL] [Abstract][Full Text] [Related]
7. Release behavior of copper and zinc from sandy soils. Zhang MK; Xia YP J Environ Sci (China); 2005; 17(4):566-71. PubMed ID: 16158580 [TBL] [Abstract][Full Text] [Related]
8. Processing of antifouling paint particles by Mytilus edulis. Turner A; Barrett M; Brown MT Environ Pollut; 2009 Jan; 157(1):215-20. PubMed ID: 18774207 [TBL] [Abstract][Full Text] [Related]
9. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Ytreberg E; Karlsson J; Eklund B Sci Total Environ; 2010 May; 408(12):2459-66. PubMed ID: 20347476 [TBL] [Abstract][Full Text] [Related]
10. Build-up and wash-off dynamics of atmospherically derived Cu, Pb, Zn and TSS in stormwater runoff as a function of meteorological characteristics. Murphy LU; Cochrane TA; O'Sullivan A Sci Total Environ; 2015 Mar; 508():206-13. PubMed ID: 25478658 [TBL] [Abstract][Full Text] [Related]
11. Risk assessment of biocides in roof paint. Part 1: experimental determination and modelling of biocide leaching from roof paint. Jungnickel C; Stock F; Brandsch T; Ranke J Environ Sci Pollut Res Int; 2008 May; 15(3):258-65. PubMed ID: 18504845 [TBL] [Abstract][Full Text] [Related]
12. Catchment condition as a major control on the quality of receiving basin sediments (Sydney Harbour, Australia). Birch GF; McCready S Sci Total Environ; 2009 Apr; 407(8):2820-35. PubMed ID: 19211135 [TBL] [Abstract][Full Text] [Related]
13. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats. Ytreberg E; Bighiu MA; Lundgren L; Eklund B Environ Pollut; 2016 Jun; 213():594-599. PubMed ID: 27016611 [TBL] [Abstract][Full Text] [Related]
14. Bioaccessibility of trace metals in boat paint particles. Turner A; Radford A Ecotoxicol Environ Saf; 2010 Jul; 73(5):817-24. PubMed ID: 20304494 [TBL] [Abstract][Full Text] [Related]
15. Short-term temporal variations in speciation of Pb, Cu, Zn and Sb in a shooting range runoff stream. Heier LS; Meland S; Ljønes M; Salbu B; Strømseng AE Sci Total Environ; 2010 May; 408(11):2409-17. PubMed ID: 20206376 [TBL] [Abstract][Full Text] [Related]
16. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles. Turner A; Singh N; Richards JP Environ Pollut; 2009 May; 157(5):1526-32. PubMed ID: 19231052 [TBL] [Abstract][Full Text] [Related]
17. Runoff pollutants of a highly trafficked urban road--correlation analysis and seasonal influences. Helmreich B; Hilliges R; Schriewer A; Horn H Chemosphere; 2010 Aug; 80(9):991-7. PubMed ID: 20579685 [TBL] [Abstract][Full Text] [Related]
18. A novel XRF method to measure environmental release of copper and zinc from antifouling paints. Ytreberg E; Lagerström M; Holmqvist A; Eklund B; Elwing H; Dahlström M; Dahl P; Dahlström M Environ Pollut; 2017 Jun; 225():490-496. PubMed ID: 28341326 [TBL] [Abstract][Full Text] [Related]
19. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities. Lagerström M; Lindgren JF; Holmqvist A; Dahlström M; Ytreberg E Mar Pollut Bull; 2018 Feb; 127():289-296. PubMed ID: 29475665 [TBL] [Abstract][Full Text] [Related]
20. Migration behavior of Cu and Zn in landfill with different operation modes. Long YY; Shen DS; Wang HT; Lu WJ J Hazard Mater; 2010 Jul; 179(1-3):883-90. PubMed ID: 20382472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]