These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46 related articles for article (PubMed ID: 21300506)
1. Precision and accuracy in CT attenuation measurement of vascular wall using region-of-interest supported by differentiation curve. Suzuki S; Kidouchi T; Kuwahara S; Vembar M; Takei R; Yamamoto A Eur J Radiol; 2012 Apr; 81(4):757-61. PubMed ID: 21300506 [TBL] [Abstract][Full Text] [Related]
2. Measurement of vascular wall attenuation: comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro. Suzuki S; Machida H; Tanaka I; Ueno E Eur J Radiol; 2012 Nov; 81(11):3348-53. PubMed ID: 22436433 [TBL] [Abstract][Full Text] [Related]
3. Vascular diameter measurement in CT angiography: comparison of model-based iterative reconstruction and standard filtered back projection algorithms in vitro. Suzuki S; Machida H; Tanaka I; Ueno E AJR Am J Roentgenol; 2013 Mar; 200(3):652-7. PubMed ID: 23436858 [TBL] [Abstract][Full Text] [Related]
4. Accuracy of attenuation measurement of vascular wall in vitro on computed tomography angiography: Effect of wall thickness, density of contrast medium, and measurement point. Suzuki S; Furui S; Kuwahara S; Kaminaga T; Yamauchi T; Konno K; Yokoyama N; Isshiki T Invest Radiol; 2006 Jun; 41(6):510-5. PubMed ID: 16763469 [TBL] [Abstract][Full Text] [Related]
5. Accuracy of automated CT angiography measurement of vascular diameter in phantoms: effect of size of display field of view, density of contrast medium, and wall thickness. Suzuki S; Furui S; Kaminaga T AJR Am J Roentgenol; 2005 Jun; 184(6):1940-4. PubMed ID: 15908558 [TBL] [Abstract][Full Text] [Related]
6. Adaptive statistical iterative reconstruction algorithm for measurement of vascular diameter on computed tomographic angiography in vitro. Suzuki S; Nishiyama Y; Kuwahara S; Hikosaka S; Monma K; Odagiri H J Comput Assist Tomogr; 2013; 37(2):311-6. PubMed ID: 23493226 [TBL] [Abstract][Full Text] [Related]
7. Intravascular functional maps of common neurovascular lesions derived from volumetric 4D CT data. Barfett JJ; Fierstra J; Willems PW; Mikulis DJ; Krings T Invest Radiol; 2010 Jul; 45(7):370-7. PubMed ID: 20479649 [TBL] [Abstract][Full Text] [Related]
8. Quantitative image-based spectral reconstruction for computed tomography. Heismann B; Balda M Med Phys; 2009 Oct; 36(10):4471-85. PubMed ID: 19928078 [TBL] [Abstract][Full Text] [Related]
9. Surface extraction from multi-material components for metrology using dual energy CT. Heinzl C; Kastner J; Gröller E IEEE Trans Vis Comput Graph; 2007; 13(6):1520-7. PubMed ID: 17968105 [TBL] [Abstract][Full Text] [Related]
10. Diameter measurement of vascular model on CT angiography using model-based iterative reconstruction: effect of tube current on accuracy. Suzuki S; Machida H; Tanaka I; Fukui R; Ueno E AJR Am J Roentgenol; 2014 Feb; 202(2):437-42. PubMed ID: 24450689 [TBL] [Abstract][Full Text] [Related]
11. Bronchial wall thickness measurement in computed tomography: effect of intravenous contrast agent and reconstruction kernel. Dettmer S; Entrup J; Schmidt M; de Wall C; Wacker F; Shin H Eur J Radiol; 2012 Nov; 81(11):3606-13. PubMed ID: 22673777 [TBL] [Abstract][Full Text] [Related]
12. Detection of in-stent restenosis of coronary stents using 40-detector row computed tomography in vitro. Suzuki S; Furui S; Kuwahara S; Kaminaga T; Takei R; Isshiki T; Kozuma K; Aizawa T J Comput Assist Tomogr; 2008; 32(2):252-8. PubMed ID: 18379312 [TBL] [Abstract][Full Text] [Related]
13. A classifying registration technique for the estimation of enhancement curves of DCE-CT scan sequences. Hachama M; Desolneux A; Cuenod CA; Richard FJ Med Image Anal; 2010 Apr; 14(2):185-94. PubMed ID: 20061177 [TBL] [Abstract][Full Text] [Related]
14. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system. Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362 [TBL] [Abstract][Full Text] [Related]
15. A local region of interest image reconstruction via filtered backprojection for fan-beam differential phase-contrast computed tomography. Qi Z; Chen GH Phys Med Biol; 2007 Sep; 52(18):N417-23. PubMed ID: 17804875 [TBL] [Abstract][Full Text] [Related]
16. 3D/2D image registration: the impact of X-ray views and their number. Tomazevic D; Likar B; Pernus F Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):450-7. PubMed ID: 18051090 [TBL] [Abstract][Full Text] [Related]
17. Hepatic tumors: region-of-interest versus volumetric analysis for quantification of attenuation at CT. Chalian H; Tochetto SM; Töre HG; Rezai P; Yaghmai V Radiology; 2012 Mar; 262(3):853-61. PubMed ID: 22357887 [TBL] [Abstract][Full Text] [Related]
18. Measurement of vascular diameter in vitro by automated software for CT angiography: effects of inner diameter, density of contrast medium, and convolution kernel. Suzuki S; Furui S; Kaminaga T; Yamauchi T AJR Am J Roentgenol; 2004 May; 182(5):1313-7. PubMed ID: 15100138 [TBL] [Abstract][Full Text] [Related]
19. Assessment of pulmonary vasculature volume with automated threshold-based 3D quantitative CT volumetry: in vitro and in vivo validation. Liu J; Wu Q; Xu Y; Bai Y; Liu Z; Li H; Zhu J Eur J Radiol; 2012 May; 81(5):1040-4. PubMed ID: 21419586 [TBL] [Abstract][Full Text] [Related]
20. Refining a region-of-interest within an available CT image. Enjilela E; Hussein EM Appl Radiat Isot; 2013 May; 75():77-84. PubMed ID: 23474379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]