BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21300521)

  • 21. Support vector machines for automated gait classification.
    Begg RK; Palaniswami M; Owen B
    IEEE Trans Biomed Eng; 2005 May; 52(5):828-38. PubMed ID: 15887532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel feature selection approach for biomedical data classification.
    Peng Y; Wu Z; Jiang J
    J Biomed Inform; 2010 Feb; 43(1):15-23. PubMed ID: 19647098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tracking leukocytes in vivo with shape and size constrained active contours.
    Ray N; Acton ST; Ley K
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1222-35. PubMed ID: 12585704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of four neural network based classifiers to automatically detect red lesions in retinal images.
    García M; López MI; Alvarez D; Hornero R
    Med Eng Phys; 2010 Dec; 32(10):1085-93. PubMed ID: 20739211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer-aided evaluation method of white matter hyperintensities related to subcortical vascular dementia based on magnetic resonance imaging.
    Kawata Y; Arimura H; Yamashita Y; Magome T; Ohki M; Toyofuku F; Higashida Y; Tsuchiya K
    Comput Med Imaging Graph; 2010 Jul; 34(5):370-6. PubMed ID: 20116974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Character independent font recognition on a single Chinese character.
    Ding X; Chen L; Wu T
    IEEE Trans Pattern Anal Mach Intell; 2007 Feb; 29(2):195-204. PubMed ID: 17170474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic detection and classification of leukocytes using convolutional neural networks.
    Zhao J; Zhang M; Zhou Z; Chu J; Cao F
    Med Biol Eng Comput; 2017 Aug; 55(8):1287-1301. PubMed ID: 27822698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hierarchical classifier using new support vector machines for automatic target recognition.
    Casasent D; Wang YC
    Neural Netw; 2005; 18(5-6):541-8. PubMed ID: 16087318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Convolutional networks can learn to generate affinity graphs for image segmentation.
    Turaga SC; Murray JF; Jain V; Roth F; Helmstaedter M; Briggman K; Denk W; Seung HS
    Neural Comput; 2010 Feb; 22(2):511-38. PubMed ID: 19922289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical ensemble of global and local classifiers for face recognition.
    Su Y; Shan S; Chen X; Gao W
    IEEE Trans Image Process; 2009 Aug; 18(8):1885-96. PubMed ID: 19556198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A method based on multispectral imaging technique for white blood cell segmentation.
    Guo N; Zeng L; Wu Q
    Comput Biol Med; 2007 Jan; 37(1):70-6. PubMed ID: 16325166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient sequential correspondence selection by cosegmentation.
    Cech J; Matas J; Perdoch M
    IEEE Trans Pattern Anal Mach Intell; 2010 Sep; 32(9):1568-81. PubMed ID: 20634553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A combination of rough-based feature selection and RBF neural network for classification using gene expression data.
    Chiang JH; Ho SH
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):91-9. PubMed ID: 18334459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. COMPARE: classification of morphological patterns using adaptive regional elements.
    Fan Y; Shen D; Gur RC; Gur RE; Davatzikos C
    IEEE Trans Med Imaging; 2007 Jan; 26(1):93-105. PubMed ID: 17243588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Particulate matter characterization by gray level co-occurrence matrix based support vector machines.
    Manivannan K; Aggarwal P; Devabhaktuni V; Kumar A; Nims D; Bhattacharya P
    J Hazard Mater; 2012 Jul; 223-224():94-103. PubMed ID: 22595545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphological granulometric features of nucleus in automatic bone marrow white blood cell classification.
    Theera-Umpon N; Dhompongsa S
    IEEE Trans Inf Technol Biomed; 2007 May; 11(3):353-9. PubMed ID: 17521086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic recognition of atypical lymphoid cells from peripheral blood by digital image analysis.
    Alférez S; Merino A; Bigorra L; Mujica L; Ruiz M; Rodellar J
    Am J Clin Pathol; 2015 Feb; 143(2):168-76; quiz 305. PubMed ID: 25596242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers.
    Prinyakupt J; Pluempitiwiriyawej C
    Biomed Eng Online; 2015 Jun; 14():63. PubMed ID: 26123131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks.
    Khan FN; Zhou Y; Lau AP; Lu C
    Opt Express; 2012 May; 20(11):12422-31. PubMed ID: 22714229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images.
    Arslan S; Ozyurek E; Gunduz-Demir C
    Cytometry A; 2014 Jun; 85(6):480-90. PubMed ID: 24623453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.