These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 21300866)

  • 41. The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis.
    Alonso-Peral MM; Candela H; del Pozo JC; Martínez-Laborda A; Ponce MR; Micol JL
    Development; 2006 Oct; 133(19):3755-66. PubMed ID: 16943276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Auxin influx carriers stabilize phyllotactic patterning.
    Bainbridge K; Guyomarc'h S; Bayer E; Swarup R; Bennett M; Mandel T; Kuhlemeier C
    Genes Dev; 2008 Mar; 22(6):810-23. PubMed ID: 18347099
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis.
    Tameshige T; Okamoto S; Lee JS; Aida M; Tasaka M; Torii KU; Uchida N
    Curr Biol; 2016 Sep; 26(18):2478-2485. PubMed ID: 27593376
    [TBL] [Abstract][Full Text] [Related]  

  • 44. From genes to shape: regulatory interactions in leaf development.
    Barkoulas M; Galinha C; Grigg SP; Tsiantis M
    Curr Opin Plant Biol; 2007 Dec; 10(6):660-6. PubMed ID: 17869569
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytokinin-Auxin Crosstalk in the Gynoecial Primordium Ensures Correct Domain Patterning.
    Müller CJ; Larsson E; Spíchal L; Sundberg E
    Plant Physiol; 2017 Nov; 175(3):1144-1157. PubMed ID: 28894023
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PINning down the connections: transcription factors and hormones in leaf morphogenesis.
    Hay A; Barkoulas M; Tsiantis M
    Curr Opin Plant Biol; 2004 Oct; 7(5):575-81. PubMed ID: 15337101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computer simulation: the imaginary friend of auxin transport biology.
    Garnett P; Steinacher A; Stepney S; Clayton R; Leyser O
    Bioessays; 2010 Sep; 32(9):828-35. PubMed ID: 20652891
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation.
    Wilmoth JC; Wang S; Tiwari SB; Joshi AD; Hagen G; Guilfoyle TJ; Alonso JM; Ecker JR; Reed JW
    Plant J; 2005 Jul; 43(1):118-30. PubMed ID: 15960621
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Auxin signaling in Arabidopsis leaf vascular development.
    Mattsson J; Ckurshumova W; Berleth T
    Plant Physiol; 2003 Mar; 131(3):1327-39. PubMed ID: 12644682
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.
    Rigas S; Ditengou FA; Ljung K; Daras G; Tietz O; Palme K; Hatzopoulos P
    New Phytol; 2013 Mar; 197(4):1130-1141. PubMed ID: 23252740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ribosomal protein L27a is required for growth and patterning in Arabidopsis thaliana.
    Szakonyi D; Byrne ME
    Plant J; 2011 Jan; 65(2):269-81. PubMed ID: 21223391
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The ASYMMETRIC LEAVES Complex Employs Multiple Modes of Regulation to Affect Adaxial-Abaxial Patterning and Leaf Complexity.
    Husbands AY; Benkovics AH; Nogueira FT; Lodha M; Timmermans MC
    Plant Cell; 2015 Dec; 27(12):3321-35. PubMed ID: 26589551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution.
    Hazak O; Bloch D; Poraty L; Sternberg H; Zhang J; Friml J; Yalovsky S
    PLoS Biol; 2010 Jan; 8(1):e1000282. PubMed ID: 20098722
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Auxin is required for leaf vein pattern in Arabidopsis.
    Sieburth LE
    Plant Physiol; 1999 Dec; 121(4):1179-90. PubMed ID: 10594105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Developmental polarity shapes thermo-induced nastic movements in plants.
    Kim JY; Park YJ; Lee JH; Park CM
    Plant Signal Behav; 2019; 14(8):1617609. PubMed ID: 31084457
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root.
    Omelyanchuk NA; Kovrizhnykh VV; Oshchepkova EA; Pasternak T; Palme K; Mironova VV
    BMC Plant Biol; 2016 Jan; 16 Suppl 1(Suppl 1):5. PubMed ID: 26821586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developmental Programming of Thermonastic Leaf Movement.
    Park YJ; Lee HJ; Gil KE; Kim JY; Lee JH; Lee H; Cho HT; Vu LD; De Smet I; Park CM
    Plant Physiol; 2019 Jun; 180(2):1185-1197. PubMed ID: 30948554
    [TBL] [Abstract][Full Text] [Related]  

  • 58. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis.
    Chen L; Tong J; Xiao L; Ruan Y; Liu J; Zeng M; Huang H; Wang JW; Xu L
    J Exp Bot; 2016 Jul; 67(14):4273-84. PubMed ID: 27255928
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis.
    Yu H; Zhang L; Wang W; Tian P; Wang W; Wang K; Gao Z; Liu S; Zhang Y; Irish VF; Huang T
    J Exp Bot; 2021 Feb; 72(5):1809-1821. PubMed ID: 33258902
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The shady side of leaf development: the role of the REVOLUTA/KANADI1 module in leaf patterning and auxin-mediated growth promotion.
    Merelo P; Paredes EB; Heisler MG; Wenkel S
    Curr Opin Plant Biol; 2017 Feb; 35():111-116. PubMed ID: 27918939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.