These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21301033)

  • 1. Extensions and improvements to the chordal graph approach to the multistate perfect phylogeny problem.
    Gysel R; Gusfield D
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):912-7. PubMed ID: 21301033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Multi-State Perfect Phylogeny Problem with missing and removable data: solutions via integer-programming and chordal graph theory.
    Gusfield D
    J Comput Biol; 2010 Mar; 17(3):383-99. PubMed ID: 20377452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perfect Phylogeny Problems with Missing Values.
    Kirkpatrick B; Stevens K
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):928-41. PubMed ID: 26356864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and practice.
    Sridhar S; Dhamdhere K; Blelloch G; Halperin E; Ravi R; Schwartz R
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):561-71. PubMed ID: 17975268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explaining evolution via constrained persistent perfect phylogeny.
    Bonizzoni P; Carrieri AP; Della Vedova G; Trucco G
    BMC Genomics; 2014; 15 Suppl 6(Suppl 6):S10. PubMed ID: 25572381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A note on efficient computation of haplotypes via perfect phylogeny.
    Bafna V; Gusfield D; Hannenhalli S; Yooseph S
    J Comput Biol; 2004; 11(5):858-66. PubMed ID: 15700406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing perfect phylogenies and proper triangulations for three-state characters.
    Gysel R; Lam F; Gusfield D
    Algorithms Mol Biol; 2012 Sep; 7(1):26. PubMed ID: 23006612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast and exact algorithm for the median of three problem: a graph decomposition approach.
    Xu AW
    J Comput Biol; 2009 Oct; 16(10):1369-81. PubMed ID: 19747038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The imperfect ancestral recombination graph reconstruction problem: upper bounds for recombination and homoplasy.
    Lam F; Tarpine R; Istrail S
    J Comput Biol; 2010 Jun; 17(6):767-81. PubMed ID: 20583925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing splits graphs.
    Dress AW; Huson DH
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(3):109-15. PubMed ID: 17048386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A linear-time algorithm for the perfect phylogeny haplotyping (PPH) problem.
    Ding Z; Filkov V; Gusfield D
    J Comput Biol; 2006 Mar; 13(2):522-53. PubMed ID: 16597255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal imperfect phylogeny reconstruction and haplotyping (IPPH).
    Sridhar S; Blelloch GE; Ravi R; Schwartz R
    Comput Syst Bioinformatics Conf; 2006; ():199-210. PubMed ID: 17369638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexity and Algorithms for Finding a Perfect Phylogeny from Mixed Tumor Samples.
    Hujdurovic A; Kacar U; Milanic M; Ries B; Tomescu AI
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):96-108. PubMed ID: 28113405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Merging Partially Labelled Trees: Hardness and a Declarative Programming Solution.
    Labarre A; Verwer S
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(2):389-97. PubMed ID: 26355785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haplotyping as perfect phylogeny: a direct approach.
    Bafna V; Gusfield D; Lancia G; Yooseph S
    J Comput Biol; 2003; 10(3-4):323-40. PubMed ID: 12935331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shorelines of islands of tractability: algorithms for parsimony and minimum perfect phylogeny haplotyping problems.
    van Iersel L; Keijsper J; Kelk S; Stougie L
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(2):301-12. PubMed ID: 18451439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing a smallest multilabeled phylogenetic tree from rooted triplets.
    Guillemot S; Jansson J; Sung WK
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):1141-7. PubMed ID: 20733243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refining phylogenetic trees given additional data: an algorithm based on parsimony.
    Wu T; Moulton V; Steel M
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(1):118-25. PubMed ID: 19179705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The median problems on linear multichromosomal genomes: graph representation and fast exact solutions.
    Xu AW
    J Comput Biol; 2010 Sep; 17(9):1195-211. PubMed ID: 20874404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The number of recombination events in a sample history: conflict graph and lower bounds.
    Bafna V; Bansal V
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(2):78-90. PubMed ID: 17048383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.