These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21301077)

  • 1. Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures.
    Kim S; Shafiei F; Ratchford D; Li X
    Nanotechnology; 2011 Mar; 22(11):115301. PubMed ID: 21301077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active drift compensation applied to nanorod manipulation with an atomic force microscope.
    Tranvouez E; Boer-Duchemin E; Comtet G; Dujardin G
    Rev Sci Instrum; 2007 Nov; 78(11):115103. PubMed ID: 18052500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic force microscope nanomanipulation with simultaneous visual guidance.
    Kim S; Ratchford DC; Li X
    ACS Nano; 2009 Oct; 3(10):2989-94. PubMed ID: 19751065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation, dissection, and lithography using modified tapping mode atomic force microscope.
    Liu Z; Li Z; Wei G; Song Y; Wang L; Sun L
    Microsc Res Tech; 2006 Dec; 69(12):998-1004. PubMed ID: 16981196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deterministic assembly of metamolecules by atomic force microscope-enabled manipulation of ultra-smooth, super-spherical gold nanoparticles.
    Kim M; Lee S; Lee J; Kim DK; Hwang YJ; Lee G; Yi GR; Song YJ
    Opt Express; 2015 May; 23(10):12766-76. PubMed ID: 26074531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using defined structures on very thin foils for characterizing AFM tips.
    Machleidt T; Franke KH; Romanus H; Cimalla V; Niebelschütz M; Spiess L; Ambacher O
    Ultramicroscopy; 2007 Oct; 107(10-11):1086-90. PubMed ID: 17587498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing colloidal forces between a Si3N4 AFM tip and single nanoparticles of silica and alumina.
    Drelich J; Long J; Xu Z; Masliyah J; White CL
    J Colloid Interface Sci; 2006 Nov; 303(2):627-38. PubMed ID: 16942778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere).
    Mougin K; Gnecco E; Rao A; Cuberes MT; Jayaraman S; McFarland EW; Haidara H; Meyer E
    Langmuir; 2008 Feb; 24(4):1577-81. PubMed ID: 18201112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of large scale nanostructures based on a modified atomic force microscope nanomechanical machining system.
    Hu ZJ; Yan YD; Zhao XS; Gao DW; Wei YY; Wang JH
    Rev Sci Instrum; 2011 Dec; 82(12):125102. PubMed ID: 22225244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dip-pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces.
    Basnar B; Willner I
    Small; 2009 Jan; 5(1):28-44. PubMed ID: 19130428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable formation of nanoscale patterns on TiO2 by conductive-AFM nanolithography.
    Garipcan B; Winters J; Atchison JS; Cathell MD; Schiffman JD; Leaffer OD; Nonnenmann SS; Schauer CL; Pişkin E; Nabet B; Spanier JE
    Langmuir; 2008 Aug; 24(16):8944-9. PubMed ID: 18646874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of atomic force microscopy image by using nanofabricated tip characterizer toward the actual sample surface topography.
    Xu M; Fujita D; Onishi K
    Rev Sci Instrum; 2009 Apr; 80(4):043703. PubMed ID: 19405662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis.
    Zhou P; Yu H; Yang W; Wen Y; Wang Z; Li WJ; Liu L
    ACS Appl Mater Interfaces; 2017 May; 9(19):16715-16724. PubMed ID: 28481525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the manipulation of C60 on the Si001 surface performed with NC-AFM.
    Martsinovich N; Kantorovich L
    Nanotechnology; 2009 Apr; 20(13):135706. PubMed ID: 19420515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging and manipulation of adsorbed lipid vesicles by an AFM tip: experiment and Monte Carlo simulations.
    Dimitrievski K; Zäch M; Zhdanov VP; Kasemo B
    Colloids Surf B Biointerfaces; 2006 Feb; 47(2):115-25. PubMed ID: 16414252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures.
    Lim SI; Zhong CJ
    Acc Chem Res; 2009 Jun; 42(6):798-808. PubMed ID: 19378982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machining oxide thin films with an atomic force microscope: pattern and object formation on the nanometer scale.
    Kim Y; Lieber CM
    Science; 1992 Jul; 257(5068):375-7. PubMed ID: 17832835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of anisotropic silica nanoparticles via controlled assembly of presynthesized spherical seeds.
    Wang J; Sugawara A; Shimojima A; Okubo T
    Langmuir; 2010 Dec; 26(23):18491-8. PubMed ID: 21077693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires.
    Xu X; Potié A; Songmuang R; Lee JW; Bercu B; Baron T; Salem B; Montès L
    Nanotechnology; 2011 Mar; 22(10):105704. PubMed ID: 21289392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.