These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21301936)

  • 1. Development of a bayesian forecasting method for warfarin dose individualization.
    Wright DF; Duffull SB
    Pharm Res; 2011 May; 28(5):1100-11. PubMed ID: 21301936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian dose-individualization method for warfarin.
    Wright DF; Duffull SB
    Clin Pharmacokinet; 2013 Jan; 52(1):59-68. PubMed ID: 23329393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Genotype on Warfarin Maintenance Dose Predictions Produced Using a Bayesian Dose Individualization Tool.
    Saffian SM; Duffull SB; Roberts RL; Tait RC; Black L; Lund KA; Thomson AH; Wright DF
    Ther Drug Monit; 2016 Dec; 38(6):677-683. PubMed ID: 27855133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian decision support tool for efficient dose individualization of warfarin in adults and children.
    Hamberg AK; Hellman J; Dahlberg J; Jonsson EN; Wadelius M
    BMC Med Inform Decis Mak; 2015 Feb; 15():7. PubMed ID: 25889768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for Predicting Warfarin Dose Requirements.
    Saffian SM; Wright DF; Roberts RL; Duffull SB
    Ther Drug Monit; 2015 Aug; 37(4):531-8. PubMed ID: 25549208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warfarin-dosing algorithm based on a population pharmacokinetic/pharmacodynamic model combined with Bayesian forecasting.
    Sasaki T; Tabuchi H; Higuchi S; Ieiri I
    Pharmacogenomics; 2009 Aug; 10(8):1257-66. PubMed ID: 19663670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the predictive performance of Bayesian dosing for warfarin in Chinese patients.
    Dong J; Shi GH; Lu M; Huang S; Liu YH; Yao JC; Li WY; Li LX
    Pharmacogenomics; 2019 Feb; 20(3):167-177. PubMed ID: 30777785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A graphic nomogram for warfarin dosage adjustment.
    Dalere GM; Coleman RW; Lum BL
    Pharmacotherapy; 1999 Apr; 19(4):461-7. PubMed ID: 10212019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DBCSMOTE: a clustering-based oversampling technique for data-imbalanced warfarin dose prediction.
    Tao Y; Zhang Y; Jiang B
    BMC Med Genomics; 2020 Oct; 13(Suppl 10):152. PubMed ID: 33087117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of using warfarin plasma concentrations in Bayesian forecasting of prothrombin-time response.
    Lee C; Coleman RW; Mungall DR
    Clin Pharm; 1987 May; 6(5):406-12. PubMed ID: 3665392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nomogram for dosing warfarin at steady state.
    Fredriks DA; Coleman RW
    Clin Pharm; 1991 Dec; 10(12):923-7. PubMed ID: 1773579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited sampling models and Bayesian estimation for mycophenolic acid area under the curve prediction in stable renal transplant patients co-medicated with ciclosporin or sirolimus.
    Musuamba FT; Rousseau A; Bosmans JL; Senessael JJ; Cumps J; Marquet P; Wallemacq P; Verbeeck RK
    Clin Pharmacokinet; 2009; 48(11):745-58. PubMed ID: 19817503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian method based on clotting factor activity for the prediction of maintenance warfarin dosage regimens.
    Pitsiu M; Parker EM; Aarons L; Rowland M
    Ther Drug Monit; 2003 Feb; 25(1):36-40. PubMed ID: 12548142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of a Bayesian forecasting model in the management of warfarin therapy after total hip arthroplasty.
    Motykie GD; Mokhtee D; Zebala LP; Caprini JA; Kudrna JC; Mungall DR
    J Arthroplasty; 1999 Dec; 14(8):988-93. PubMed ID: 10614892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between warfarin dosage and international normalized ratio: a dose-response analysis and evaluation based on multicenter data.
    Xue L; Zhang Y; Xie C; Zhou L; Liu L; Zhang H; Xu L; Song H; Lin M; Qiu H; Zhu J; Zhu Y; Zou J; Zhuang W; Xuan B; Chen Y; Fan Y; Wu D; Shen Z; Miao L
    Eur J Clin Pharmacol; 2019 Jun; 75(6):785-794. PubMed ID: 31037455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy.
    Hamberg AK; Dahl ML; Barban M; Scordo MG; Wadelius M; Pengo V; Padrini R; Jonsson EN
    Clin Pharmacol Ther; 2007 Apr; 81(4):529-38. PubMed ID: 17301738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy assessment of pharmacogenetically predictive warfarin dosing algorithms in patients of an academic medical center anticoagulation clinic.
    Shaw PB; Donovan JL; Tran MT; Lemon SC; Burgwinkle P; Gore J
    J Thromb Thrombolysis; 2010 Aug; 30(2):220-5. PubMed ID: 20204461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining time in therapeutic range for busy clinicians: frequency of dose changes is a good surrogate marker to identify patients with suboptimal anticoagulation with warfarin.
    Vijenthira A; Le Gal G; Castellucci LA; Carrier M
    Thromb Res; 2014 Sep; 134(3):584-6. PubMed ID: 25037497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of optimal warfarin maintenance dose using advanced artificial neural networks.
    Grossi E; Podda GM; Pugliano M; Gabba S; Verri A; Carpani G; Buscema M; Casazza G; Cattaneo M
    Pharmacogenomics; 2014 Jan; 15(1):29-37. PubMed ID: 24329188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Personalized Anticoagulation: Optimizing Warfarin Management Using Genetics and Simulated Clinical Trials.
    Ravvaz K; Weissert JA; Ruff CT; Chi CL; Tonellato PJ
    Circ Cardiovasc Genet; 2017 Dec; 10(6):. PubMed ID: 29237680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.