These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 21301965)
1. Novel multi-sided, microelectrode arrays for implantable neural applications. Seymour JP; Langhals NB; Anderson DJ; Kipke DR Biomed Microdevices; 2011 Jun; 13(3):441-51. PubMed ID: 21301965 [TBL] [Abstract][Full Text] [Related]
2. A hybrid PDMS-Parylene subdural multi-electrode array. Ochoa M; Wei P; Wolley AJ; Otto KJ; Ziaie B Biomed Microdevices; 2013 Jun; 15(3):437-43. PubMed ID: 23334754 [TBL] [Abstract][Full Text] [Related]
3. A double-sided fabrication process for intrafascicular parylene C based electrode arrays. Mueller M; Boehler C; Jaeger J; Asplund M; Stieglitz T Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2798-2801. PubMed ID: 28268899 [TBL] [Abstract][Full Text] [Related]
4. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943 [TBL] [Abstract][Full Text] [Related]
5. A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate. Yi W; Chen C; Feng Z; Xu Y; Zhou C; Masurkar N; Cavanaugh J; Cheng MM Nanotechnology; 2015 Mar; 26(12):125301. PubMed ID: 25742874 [TBL] [Abstract][Full Text] [Related]
6. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems. Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016 [TBL] [Abstract][Full Text] [Related]
7. A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex. Winslow BD; Christensen MB; Yang WK; Solzbacher F; Tresco PA Biomaterials; 2010 Dec; 31(35):9163-72. PubMed ID: 20561678 [TBL] [Abstract][Full Text] [Related]
8. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation. Kim R; Nam Y J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604 [TBL] [Abstract][Full Text] [Related]
9. 3D Parylene sheath neural probe for chronic recordings. Kim BJ; Kuo JT; Hara SA; Lee CD; Yu L; Gutierrez CA; Hoang TQ; Pikov V; Meng E J Neural Eng; 2013 Aug; 10(4):045002. PubMed ID: 23723130 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical characteristics of microelectrode designed for electrical stimulation. Cui H; Xie X; Xu S; Chan LLH; Hu Y Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Flexible Tubular Microelectrode with Conducting Polymer for Multi-Functional Implantable Tissue-Machine Interface. Tian HC; Liu JQ; Kang XY; Tang LJ; Wang MH; Ji BW; Yang B; Wang XL; Chen X; Yang CS Sci Rep; 2016 May; 6():26910. PubMed ID: 27229174 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. Venkatraman S; Hendricks J; King ZA; Sereno AJ; Richardson-Burns S; Martin D; Carmena JM IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):307-16. PubMed ID: 21292598 [TBL] [Abstract][Full Text] [Related]
13. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174 [TBL] [Abstract][Full Text] [Related]
14. A novel technique for increasing charge injection capacity of neural electrodes for efficacious and safe neural stimulation. Negi S; Bhandari R; Solzbacher F Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5142-5. PubMed ID: 23367086 [TBL] [Abstract][Full Text] [Related]
15. Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings. Kozai TD; Catt K; Du Z; Na K; Srivannavit O; Haque RU; Seymour J; Wise KD; Yoon E; Cui XT IEEE Trans Biomed Eng; 2016 Jan; 63(1):111-9. PubMed ID: 26087481 [TBL] [Abstract][Full Text] [Related]
16. Optimization of microelectrode design for cortical recording based on thermal noise considerations. Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. Kolarcik CL; Catt K; Rost E; Albrecht IN; Bourbeau D; Du Z; Kozai TD; Luo X; Weber DJ; Cui XT J Neural Eng; 2015 Feb; 12(1):016008. PubMed ID: 25485675 [TBL] [Abstract][Full Text] [Related]
18. Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording. Li SY; Tseng HY; Chen BW; Lo YC; Shao HH; Wu YT; Li SJ; Chang CW; Liu TC; Hsieh FY; Yang Y; Lai YB; Chen PC; Chen YY Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832046 [TBL] [Abstract][Full Text] [Related]
19. Encapsulation of an integrated neural interface device with Parylene C. Hsu JM; Rieth L; Normann RA; Tathireddy P; Solzbacher F IEEE Trans Biomed Eng; 2009 Jan; 56(1):23-9. PubMed ID: 19224715 [TBL] [Abstract][Full Text] [Related]