These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21302162)

  • 1. A hybrid static optimisation method to estimate muscle forces during muscle co-activation.
    Son J; Hwang S; Kim Y
    Comput Methods Biomech Biomed Engin; 2012; 15(3):249-54. PubMed ID: 21302162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-step EMG-and-optimization process to estimate muscle force during dynamic movement.
    Amarantini D; Rao G; Berton E
    J Biomech; 2010 Jun; 43(9):1827-30. PubMed ID: 20206935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle forces during running predicted by gradient-based and random search static optimisation algorithms.
    Miller RH; Gillette JC; Derrick TR; Caldwell GE
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):217-25. PubMed ID: 18828028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ
    J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of software for human muscle force estimation.
    Tang G; Qian LW; Wei GF; Wang HS; Wang CT
    Comput Methods Biomech Biomed Engin; 2012; 15(3):275-83. PubMed ID: 21607886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A task-specific validation of homogeneous non-linear optimisation approaches.
    Jinha A; Ait-Haddou R; Kaya M; Herzog W
    J Theor Biol; 2009 Aug; 259(4):695-700. PubMed ID: 19406130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The minimum required muscle force for a sit-to-stand task.
    Yoshioka S; Nagano A; Hay DC; Fukashiro S
    J Biomech; 2012 Feb; 45(4):699-705. PubMed ID: 22236523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model.
    Jinha A; Ait-Haddou R; Herzog W
    J Biomech; 2006; 39(6):1145-52. PubMed ID: 16549102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A hybrid method including optimization and force-EMG relationship for predicting muscle force].
    Zhang X; Ye M; Zhang L; Nie W; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1260-3. PubMed ID: 20095482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk.
    Kingma I; Staudenmann D; van Dieën JH
    J Electromyogr Kinesiol; 2007 Feb; 17(1):14-24. PubMed ID: 16531071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proprioception based regulation model to estimate the trunk muscle forces.
    Pomero V; Lavaste F; Imbert G; Skalli W
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):331-8. PubMed ID: 15621653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of handgrip force using frequency-band technique during fatiguing muscle contraction.
    Soo Y; Sugi M; Yokoi H; Arai T; Nishino M; Kato R; Nakamura T; Ota J
    J Electromyogr Kinesiol; 2010 Oct; 20(5):888-95. PubMed ID: 19837604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of forces between synergistics and antagonistics muscles using an optimization criterion depending on muscle contraction behavior.
    Rengifo C; Aoustin Y; Plestan F; Chevallereau C
    J Biomech Eng; 2010 Apr; 132(4):041009. PubMed ID: 20387972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of different methods for estimating muscle forces in human movement.
    Lin YC; Dorn TW; Schache AG; Pandy MG
    Proc Inst Mech Eng H; 2012 Feb; 226(2):103-12. PubMed ID: 22468462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces.
    Vilimek M
    Acta Bioeng Biomech; 2014; 16(3):119-27. PubMed ID: 25307446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA; Perry J; Gitter AJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of biomechanics and muscle activation strategy in the production of endpoint force patterns in the cat hindlimb.
    Lemay MA; Bhowmik-Stoker M; McConnell GC; Grill WM
    J Biomech; 2007; 40(16):3679-87. PubMed ID: 17692854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methodological aspects of SEMG recordings for force estimation--a tutorial and review.
    Staudenmann D; Roeleveld K; Stegeman DF; van Dieën JH
    J Electromyogr Kinesiol; 2010 Jun; 20(3):375-87. PubMed ID: 19758823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.