BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21302360)

  • 1. Comparison of a pair of synthetic tea-catechin-derived epimers: synthesis, antifolate activity, and tyrosinase-mediated activation in melanoma.
    Sáez-Ayala M; Sánchez-del-Campo L; Montenegro MF; Chazarra S; Tárraga A; Cabezas-Herrera J; Rodríguez-López JN
    ChemMedChem; 2011 Mar; 6(3):440-9. PubMed ID: 21302360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and biological activity of a 3,4,5-trimethoxybenzoyl ester analogue of epicatechin-3-gallate.
    Sánchez-del-Campo L; Otón F; Tárraga A; Cabezas-Herrera J; Chazarra S; Rodríguez-López JN
    J Med Chem; 2008 Apr; 51(7):2018-26. PubMed ID: 18324763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melanoma activation of 3-o-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin to a potent irreversible inhibitor of dihydrofolate reductase.
    Sánchez-del-Campo L; Tárraga A; Montenegro MF; Cabezas-Herrera J; Rodríguez-López JN
    Mol Pharm; 2009; 6(3):883-94. PubMed ID: 19358568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of dihydrofolate reductase downregulation in melanoma by 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin.
    Sánchez-del-Campo L; Chazarra S; Montenegro MF; Cabezas-Herrera J; Rodríguez-López JN
    J Cell Biochem; 2010 Aug; 110(6):1399-409. PubMed ID: 20564235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing the antifolate activity of synthetic tea-derived catechins.
    Sáez-Ayala M; Fernández-Pérez MP; Chazarra S; Mchedlishvili N; Tárraga-Tomás A; Rodríguez-López JN
    Molecules; 2013 Jul; 18(7):8319-41. PubMed ID: 23863773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The antifolate activity of tea catechins.
    Navarro-Perán E; Cabezas-Herrera J; García-Cánovas F; Durrant MC; Thorneley RN; Rodríguez-López JN
    Cancer Res; 2005 Mar; 65(6):2059-64. PubMed ID: 15781612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the inhibition of bovine liver dihydrofolate reductase by tea catechins: origin of slow-binding inhibition and pH studies.
    Navarro-Perán E; Cabezas-Herrera J; Hiner AN; Sadunishvili T; García-Cánovas F; Rodríguez-López JN
    Biochemistry; 2005 May; 44(20):7512-25. PubMed ID: 15895994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of natural and synthetic polyphenols to human dihydrofolate reductase.
    Sánchez-Del-Campo L; Sáez-Ayala M; Chazarra S; Cabezas-Herrera J; Rodríguez-López JN
    Int J Mol Sci; 2009 Dec; 10(12):5398-5410. PubMed ID: 20054477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of inhibition of wt-dihydrofolate reductase from E. coli by tea epigallocatechin-gallate.
    Spina M; Cuccioloni M; Mozzicafreddo M; Montecchia F; Pucciarelli S; Eleuteri AM; Fioretti E; Angeletti M
    Proteins; 2008 Jul; 72(1):240-51. PubMed ID: 18214969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism inspired development of rationally designed dihydrofolate reductase inhibitors as anticancer agents.
    Singh P; Kaur M; Sachdeva S
    J Med Chem; 2012 Jul; 55(14):6381-90. PubMed ID: 22734697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a synthetic antitumoral catechin and its tyrosinase-processed product on the structural properties of phosphatidylcholine membranes.
    How CW; Teruel JA; Ortiz A; Montenegro MF; Rodríguez-López JN; Aranda FJ
    Biochim Biophys Acta; 2014 May; 1838(5):1215-24. PubMed ID: 24518157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of folate cycle disruption by the green tea polyphenol epigallocatechin-3-gallate.
    Navarro-Perán E; Cabezas-Herrera J; Campo LS; Rodríguez-López JN
    Int J Biochem Cell Biol; 2007; 39(12):2215-25. PubMed ID: 17683969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the methionine cycle for melanoma therapy with 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin.
    Sánchez-del-Campo L; Rodríguez-López JN
    Int J Cancer; 2008 Nov; 123(10):2446-55. PubMed ID: 18729182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of N-{4-[(2,4-diamino-5-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)thio]benzoyl}-L-glutamic acid and N-{4-[(2-amino-4-oxo-5-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)thio]benzoyl}-L-glutamic acid as dual inhibitors of dihydrofolate reductase and thymidylate synthase and as potential antitumor agents.
    Gangjee A; Lin X; Kisliuk RL; McGuire JJ
    J Med Chem; 2005 Nov; 48(23):7215-22. PubMed ID: 16279780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The antifolate activity of tea catechins.
    Lucock MD; Roach PD
    Cancer Res; 2005 Sep; 65(18):8573. PubMed ID: 16166339
    [No Abstract]   [Full Text] [Related]  

  • 16. Epimerization of tea catechins and O-methylated derivatives of (-)-epigallocatechin-3-O-gallate: relationship between epimerization and chemical structure.
    Suzuki M; Sano M; Yoshida R; Degawa M; Miyase T; Maeda-Yamamoto M
    J Agric Food Chem; 2003 Jan; 51(2):510-4. PubMed ID: 12517118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel 5-substituted, 2,4-diaminofuro[2,3-d]pyrimidines as multireceptor tyrosine kinase and dihydrofolate reductase inhibitors with antiangiogenic and antitumor activity.
    Gangjee A; Zeng Y; Ihnat M; Warnke LA; Green DW; Kisliuk RL; Lin FT
    Bioorg Med Chem; 2005 Sep; 13(18):5475-91. PubMed ID: 16039863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and biological activity of the tea catechin metabolites, M4 and M6 and their methoxy-derivatives.
    Lambert JD; Rice JE; Hong J; Hou Z; Yang CS
    Bioorg Med Chem Lett; 2005 Feb; 15(4):873-6. PubMed ID: 15686878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of green tea polyphenols and the biological activities of those metabolites.
    Lambert JD; Sang S; Yang CS
    Mol Pharm; 2007; 4(6):819-25. PubMed ID: 17963356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and antimicrobial activities of 3-O-alkyl analogues of (+)-catechin: improvement of stability and proposed action mechanism.
    Park KD; Cho SJ
    Eur J Med Chem; 2010 Mar; 45(3):1028-33. PubMed ID: 19962795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.