These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 21302840)
1. Modeling spatial aggregation of finite populations. Zillio T; He F Ecology; 2010 Dec; 91(12):3698-706. PubMed ID: 21302840 [TBL] [Abstract][Full Text] [Related]
2. A spatially explicit model for tropical tree diversity patterns. Horvát S; Derzsi A; Néda Z; Balog A J Theor Biol; 2010 Aug; 265(4):517-23. PubMed ID: 20561975 [TBL] [Abstract][Full Text] [Related]
3. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico). Wehenkel C; Brazão-Protázio JM; Carrillo-Parra A; Martínez-Guerrero JH; Crecente-Campo F PLoS One; 2015; 10(10):e0140442. PubMed ID: 26496189 [TBL] [Abstract][Full Text] [Related]
4. Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Shen G; Yu M; Hu XS; Mi X; Ren H; Sun IF; Ma K Ecology; 2009 Nov; 90(11):3033-41. PubMed ID: 19967859 [TBL] [Abstract][Full Text] [Related]
5. Community-level species' correlated distribution can be scale-independent and related to the evenness of abundance. Chen Y; Shen TJ; Condit R; Hubbell SP Ecology; 2018 Dec; 99(12):2787-2800. PubMed ID: 30347110 [TBL] [Abstract][Full Text] [Related]
6. Modeling the spatial distribution and fruiting pattern of a key tree species in a neotropical forest: methodology and potential applications. Caillaud D; Crofoot MC; Scarpino SV; Jansen PA; Garzon-Lopez CX; Winkelhagen AJ; Bohlman SA; Walsh PD PLoS One; 2010 Nov; 5(11):e15002. PubMed ID: 21124927 [TBL] [Abstract][Full Text] [Related]
7. Recruitment in tropical tree species: revealing complex spatial patterns. Wiegand T; Martínez I; Huth A Am Nat; 2009 Oct; 174(4):E106-40. PubMed ID: 19691434 [TBL] [Abstract][Full Text] [Related]
8. Fitting ecological process models to spatial patterns using scalewise variances and moment equations. Detto M; Muller-Landau HC Am Nat; 2013 Apr; 181(4):E68-82. PubMed ID: 23535623 [TBL] [Abstract][Full Text] [Related]
9. Estimating species pools for a single ecological assemblage. Shen TJ; Chen Y; Chen YF BMC Ecol; 2017 Dec; 17(1):45. PubMed ID: 29273049 [TBL] [Abstract][Full Text] [Related]
10. A model-based method for estimating effective dispersal distance in tropical plant populations. Anand M; Langille A Theor Popul Biol; 2010 Jun; 77(4):219-26. PubMed ID: 20184908 [TBL] [Abstract][Full Text] [Related]
11. Spatial patterns in the distribution of tropical tree species. Condit R; Ashton PS; Baker P; Bunyavejchewin S; Gunatilleke S; Gunatilleke N; Hubbell SP; Foster RB; Itoh A; LaFrankie JV; Lee HS; Losos E; Manokaran N; Sukumar R; Yamakura T Science; 2000 May; 288(5470):1414-8. PubMed ID: 10827950 [TBL] [Abstract][Full Text] [Related]
12. The quest for a null model for macroecological patterns: geometry of species distributions at multiple spatial scales. Storch D; Sizling AL; Reif J; Polechová J; Sizlingová E; Gaston KJ Ecol Lett; 2008 Aug; 11(8):771-84. PubMed ID: 18638301 [TBL] [Abstract][Full Text] [Related]
13. A spatially explicit approach to estimating species occupancy and spatial correlation. Hui C; McGeoch MA; Warren M J Anim Ecol; 2006 Jan; 75(1):140-7. PubMed ID: 16903051 [TBL] [Abstract][Full Text] [Related]
14. Spatial patterns reveal negative density dependence and habitat associations in tropical trees. Bagchi R; Henrys PA; Brown PE; Burslem DF; Diggle PJ; Gunatilleke CV; Gunatilleke IA; Kassim AR; Law R; Noor S; Valencia RL Ecology; 2011 Sep; 92(9):1723-9. PubMed ID: 21939068 [TBL] [Abstract][Full Text] [Related]
15. Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ledo A; Schnitzer SA Ecology; 2014 Aug; 95(8):2169-78. PubMed ID: 25230468 [TBL] [Abstract][Full Text] [Related]
16. Linking parasite populations in hosts to parasite populations in space through Taylor's law and the negative binomial distribution. Cohen JE; Poulin R; Lagrue C Proc Natl Acad Sci U S A; 2017 Jan; 114(1):E47-E56. PubMed ID: 27994156 [TBL] [Abstract][Full Text] [Related]
17. Occupancy-abundance models for predicting densities of three leaf beetles damaging the multipurpose tree Sesbania sesban in eastern and southern Africa. Sileshi G; Hailu G; Mafongoya PL Bull Entomol Res; 2006 Feb; 96(1):61-9. PubMed ID: 16441906 [TBL] [Abstract][Full Text] [Related]
18. Neutral theory and relative species abundance in ecology. Volkov I; Banavar JR; Hubbell SP; Maritan A Nature; 2003 Aug; 424(6952):1035-7. PubMed ID: 12944964 [TBL] [Abstract][Full Text] [Related]
19. Qualitative differences in tree species distributions along soil chemical gradients give clues to the mechanisms of specialization: why boron may be the most important soil nutrient at Barro Colorado Island. Steidinger B New Phytol; 2015 May; 206(3):895-899. PubMed ID: 25627819 [No Abstract] [Full Text] [Related]
20. Modelling macroparasite aggregation using a nematode-sheep system: the Weibull distribution as an alternative to the negative binomial distribution? Gaba S; Ginot V; Cabaret J Parasitology; 2005 Sep; 131(Pt 3):393-401. PubMed ID: 16178361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]