These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 21303088)
1. Time-optimal control of spin 1/2 particles in the presence of radiation damping and relaxation. Zhang Y; Lapert M; Sugny D; Braun M; Glaser SJ J Chem Phys; 2011 Feb; 134(5):054103. PubMed ID: 21303088 [TBL] [Abstract][Full Text] [Related]
2. Defeating radiation damping and magnetic field inhomogeneity with spatially encoded noise. Michal CA Chemphyschem; 2010 Nov; 11(16):3447-55. PubMed ID: 20928881 [TBL] [Abstract][Full Text] [Related]
3. A simulation algorithm based on Bloch equations and product operator matrix: application to dipolar and scalar couplings. Cai C; Chen Z; Cai S; Zhong J J Magn Reson; 2005 Feb; 172(2):242-53. PubMed ID: 15649752 [TBL] [Abstract][Full Text] [Related]
4. A quantum description of radiation damping and the free induction signal in magnetic resonance. Tropp J J Chem Phys; 2013 Jul; 139(1):014105. PubMed ID: 23822291 [TBL] [Abstract][Full Text] [Related]
5. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. Khaneja N; Reiss T; Kehlet C; Schulte-Herbrüggen T; Glaser SJ J Magn Reson; 2005 Feb; 172(2):296-305. PubMed ID: 15649756 [TBL] [Abstract][Full Text] [Related]
7. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model. Schurr JM; Fujimoto BS; Diaz R; Robinson BH J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047 [TBL] [Abstract][Full Text] [Related]
8. Nuclear magnetic resonance in inhomogeneous magnetic fields. Balibanu F; Hailu K; Eymael R; Demco DE; Blumich B J Magn Reson; 2000 Aug; 145(2):246-58. PubMed ID: 10910693 [TBL] [Abstract][Full Text] [Related]
9. Generating spin turbulence through nonlinear excitation in liquid-state NMR. Abergel D; Louis-Joseph A J Magn Reson; 2009 Feb; 196(2):115-8. PubMed ID: 19013087 [TBL] [Abstract][Full Text] [Related]
10. Spin amplification in solution magnetic resonance using radiation damping. Walls JD; Huang SY; Lin YY J Chem Phys; 2007 Aug; 127(5):054507. PubMed ID: 17688349 [TBL] [Abstract][Full Text] [Related]
11. Optimal excitation of (23)Na nuclear spins in the presence of residual quadrupolar coupling and quadrupolar relaxation. Lee JS; Regatte RR; Jerschow A J Chem Phys; 2009 Nov; 131(17):174501. PubMed ID: 19895019 [TBL] [Abstract][Full Text] [Related]
12. Non-Markovian stochastic Schrödinger equations in different temperature regimes: a study of the spin-boson model. de Vega I; Alonso D; Gaspard P; Strunz WT J Chem Phys; 2005 Mar; 122(12):124106. PubMed ID: 15836368 [TBL] [Abstract][Full Text] [Related]
14. A method for simulation of NOESY, ROESY, and off-resonance ROESY spectra. Allard P; Helgstrand M; Hard T J Magn Reson; 1997 Nov; 129(1):19-29. PubMed ID: 9405212 [TBL] [Abstract][Full Text] [Related]
15. Optimal control of the signal-to-noise ratio per unit time of a spin 1/2 particle: the crusher gradient and the radiation damping cases. Lapert M; Assémat E; Glaser SJ; Sugny D J Chem Phys; 2015 Jan; 142(4):044202. PubMed ID: 25637980 [TBL] [Abstract][Full Text] [Related]
16. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach. Zamar RC; Mensio O J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155 [TBL] [Abstract][Full Text] [Related]
17. Radiation damping and reciprocity in nuclear magnetic resonance: the replacement of the filling factor. Tropp J; Van Criekinge M J Magn Reson; 2010 Sep; 206(1):161-7. PubMed ID: 20615733 [TBL] [Abstract][Full Text] [Related]
18. Proton field-cycling nuclear magnetic resonance relaxometry in the smectic A mesophase of thermotropic cyanobiphenyls: Effects of sonication. Bonetto F; Anoardo E J Chem Phys; 2004 Jul; 121(1):554-61. PubMed ID: 15260577 [TBL] [Abstract][Full Text] [Related]