These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 21303103)

  • 1. Tensor decomposition in post-Hartree-Fock methods. I. Two-electron integrals and MP2.
    Benedikt U; Auer AA; Espig M; Hackbusch W
    J Chem Phys; 2011 Feb; 134(5):054118. PubMed ID: 21303103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensor decomposition in post-Hartree-Fock methods. II. CCD implementation.
    Benedikt U; Böhm KH; Auer AA
    J Chem Phys; 2013 Dec; 139(22):224101. PubMed ID: 24329050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory.
    Hohenstein EG; Parrish RM; Martínez TJ
    J Chem Phys; 2012 Jul; 137(4):044103. PubMed ID: 22852593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2014 Sep; 141(12):124108. PubMed ID: 25273413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.
    Khoromskaia V; Khoromskij BN
    Phys Chem Chem Phys; 2015 Dec; 17(47):31491-509. PubMed ID: 26016539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid correlation models based on active-space partitioning: seeking accurate O(N5) ab initio methods for bond breaking.
    Bochevarov AD; Temelso B; Sherrill CD
    J Chem Phys; 2006 Aug; 125(5):054109. PubMed ID: 16942205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2004 Aug; 121(6):2483-90. PubMed ID: 15281845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and computational characterization of the 17O quadrupole coupling and magnetic shielding tensors for p-nitrobenzaldehyde and formaldehyde.
    Wu G; Mason P; Mo X; Terskikh V
    J Phys Chem A; 2008 Feb; 112(5):1024-32. PubMed ID: 18193848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-batched tensor decomposed two-electron repulsion integrals.
    Schmitz G; Madsen NK; Christiansen O
    J Chem Phys; 2017 Apr; 146(13):134112. PubMed ID: 28390342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explicitly correlated atomic orbital basis second order Møller-Plesset theory.
    Hollman DS; Wilke JJ; Schaefer HF
    J Chem Phys; 2013 Feb; 138(6):064107. PubMed ID: 23425461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tensor hypercontraction. II. Least-squares renormalization.
    Parrish RM; Hohenstein EG; Martínez TJ; Sherrill CD
    J Chem Phys; 2012 Dec; 137(22):224106. PubMed ID: 23248986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals.
    Pinski P; Riplinger C; Valeev EF; Neese F
    J Chem Phys; 2015 Jul; 143(3):034108. PubMed ID: 26203015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation.
    Valeev EF; Janssen CL
    J Chem Phys; 2004 Jul; 121(3):1214-27. PubMed ID: 15260663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensor representation techniques for full configuration interaction: A Fock space approach using the canonical product format.
    Böhm KH; Auer AA; Espig M
    J Chem Phys; 2016 Jun; 144(24):244102. PubMed ID: 27369492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General orbital invariant MP2-F12 theory.
    Werner HJ; Adler TB; Manby FR
    J Chem Phys; 2007 Apr; 126(16):164102. PubMed ID: 17477584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Hartree-Fock and Kohn-Sham orbitals in the basis set superposition error for systems linked by hydrogen bonds.
    Garza J; Ramírez JZ; Vargas R
    J Phys Chem A; 2005 Feb; 109(4):643-51. PubMed ID: 16833391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements.
    Höfener S; Bischoff FA; Glöss A; Klopper W
    Phys Chem Chem Phys; 2008 Jun; 10(23):3390-9. PubMed ID: 18535722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetizability and rotational g tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals.
    Loibl S; Schütz M
    J Chem Phys; 2014 Jul; 141(2):024108. PubMed ID: 25028000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid scheme for the resolution-of-the-identity approximation in second-order Møller-Plesset linear-r(12) perturbation theory.
    Klopper W
    J Chem Phys; 2004 Jun; 120(23):10890-5. PubMed ID: 15268119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.