BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 21303526)

  • 1. Regulation of cardiac microRNAs by serum response factor.
    Zhang X; Azhar G; Helms SA; Wei JY
    J Biomed Sci; 2011 Feb; 18(1):15. PubMed ID: 21303526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Connective Tissue Growth Factor and Cardiac Fibrosis by an SRF/MicroRNA-133a Axis.
    Angelini A; Li Z; Mericskay M; Decaux JF
    PLoS One; 2015; 10(10):e0139858. PubMed ID: 26440278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel serum response factor cofactor in cardiac gene regulation.
    Zhang X; Azhar G; Zhong Y; Wei JY
    J Biol Chem; 2004 Dec; 279(53):55626-32. PubMed ID: 15492011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of microRNAs by Brahma-related gene 1 (Brg1) in smooth muscle cells.
    Chen M; Herring BP
    J Biol Chem; 2013 Mar; 288(9):6397-408. PubMed ID: 23339192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets.
    Niu Z; Yu W; Zhang SX; Barron M; Belaguli NS; Schneider MD; Parmacek M; Nordheim A; Schwartz RJ
    J Biol Chem; 2005 Sep; 280(37):32531-8. PubMed ID: 15929941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-activation of nuclear factor-κB and myocardin/serum response factor conveys the hypertrophy signal of high insulin levels in cardiac myoblasts.
    Madonna R; Geng YJ; Bolli R; Rokosh G; Ferdinandy P; Patterson C; De Caterina R
    J Biol Chem; 2014 Jul; 289(28):19585-98. PubMed ID: 24855642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy.
    Lim TB; Aliwarga E; Luu TDA; Li YP; Ng SL; Annadoray L; Sian S; Ackers-Johnson MA; Foo RS
    Cardiovasc Res; 2019 Dec; 115(14):1998-2007. PubMed ID: 31114845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An SRF/miR-1 axis regulates NCX1 and annexin A5 protein levels in the normal and failing heart.
    Tritsch E; Mallat Y; Lefebvre F; Diguet N; Escoubet B; Blanc J; De Windt LJ; Catalucci D; Vandecasteele G; Li Z; Mericskay M
    Cardiovasc Res; 2013 Jun; 98(3):372-80. PubMed ID: 23436819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-150 Protects Against Pressure Overload-Induced Cardiac Hypertrophy.
    Liu W; Liu Y; Zhang Y; Zhu X; Zhang R; Guan L; Tang Q; Jiang H; Huang C; Huang H
    J Cell Biochem; 2015 Oct; 116(10):2166-76. PubMed ID: 25639779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and expression of SRF targeted by miR-133a during early development of Paralichthys olivaceus.
    Su Y; Fu Y; Zhang H; Shi Z; Zhang J; Gao L
    Fish Physiol Biochem; 2015 Oct; 41(5):1093-104. PubMed ID: 26036211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-125b Affects Vascular Smooth Muscle Cell Function by Targeting Serum Response Factor.
    Chen Z; Wang M; Huang K; He Q; Li H; Chang G
    Cell Physiol Biochem; 2018; 46(4):1566-1580. PubMed ID: 29689557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiation of serum response factor activity by a family of myocardin-related transcription factors.
    Wang DZ; Li S; Hockemeyer D; Sutherland L; Wang Z; Schratt G; Richardson JA; Nordheim A; Olson EN
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14855-60. PubMed ID: 12397177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression.
    Wang Z; Wang DZ; Hockemeyer D; McAnally J; Nordheim A; Olson EN
    Nature; 2004 Mar; 428(6979):185-9. PubMed ID: 15014501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An intragenic SRF-dependent regulatory motif directs cardiac-specific microRNA-1-1/133a-2 expression.
    Li Q; Guo J; Lin X; Yang X; Ma Y; Fan GC; Chang J
    PLoS One; 2013; 8(9):e75470. PubMed ID: 24058688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zipzap/p200 is a novel zinc finger protein contributing to cardiac gene regulation.
    Zhang X; Azhar G; Zhong Y; Wei JY
    Biochem Biophys Res Commun; 2006 Aug; 346(3):794-801. PubMed ID: 16782067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development.
    Wystub K; Besser J; Bachmann A; Boettger T; Braun T
    PLoS Genet; 2013; 9(9):e1003793. PubMed ID: 24068960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of p49/STRAP alters cellular cytoskeletal structure and gross anatomy in mice.
    Zhang X; Azhar G; Rogers SC; Foster SR; Luo S; Wei JY
    BMC Cell Biol; 2014 Sep; 15():32. PubMed ID: 25183317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy.
    Wang K; Long B; Zhou J; Li PF
    J Biol Chem; 2010 Apr; 285(16):11903-12. PubMed ID: 20177053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible mechanism of GATA4 inhibiting myocardin activity during cardiac hypertrophy.
    Xu Y; Liang C; Luo Y; Xing W; Zhang T
    J Cell Biochem; 2019 Jun; 120(6):9047-9055. PubMed ID: 30582211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts.
    Matkovich SJ; Wang W; Tu Y; Eschenbacher WH; Dorn LE; Condorelli G; Diwan A; Nerbonne JM; Dorn GW
    Circ Res; 2010 Jan; 106(1):166-75. PubMed ID: 19893015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.