These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. van Steensel B; Henikoff S Nat Biotechnol; 2000 Apr; 18(4):424-8. PubMed ID: 10748524 [TBL] [Abstract][Full Text] [Related]
4. Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18. Bao B; Pestinger V; Hassan YI; Borgstahl GE; Kolar C; Zempleni J J Nutr Biochem; 2011 May; 22(5):470-5. PubMed ID: 20688500 [TBL] [Abstract][Full Text] [Related]
5. Cytosine methylation in miR-153 gene promoters increases the expression of holocarboxylase synthetase, thereby increasing the abundance of histone H4 biotinylation marks in HEK-293 human kidney cells. Bao B; Rodriguez-Melendez R; Zempleni J J Nutr Biochem; 2012 Jun; 23(6):635-9. PubMed ID: 21764280 [TBL] [Abstract][Full Text] [Related]
6. The polypeptide Syn67 interacts physically with human holocarboxylase synthetase, but is not a target for biotinylation. Hassan YI; Moriyama H; Zempleni J Arch Biochem Biophys; 2010 Mar; 495(1):35-41. PubMed ID: 20026029 [TBL] [Abstract][Full Text] [Related]
7. Holocarboxylase synthetase acts as a biotin-independent transcriptional repressor interacting with HDAC1, HDAC2 and HDAC7. Trujillo-Gonzalez I; Cervantes-Roldan R; Gonzalez-Noriega A; Michalak C; Reyes-Carmona S; Barrios-Garcia T; Meneses-Morales I; Leon-Del-Rio A Mol Genet Metab; 2014 Mar; 111(3):321-330. PubMed ID: 24239178 [TBL] [Abstract][Full Text] [Related]
8. DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Greil F; Moorman C; van Steensel B Methods Enzymol; 2006; 410():342-59. PubMed ID: 16938559 [TBL] [Abstract][Full Text] [Related]
9. K16-biotinylated histone H4 is overrepresented in repeat regions and participates in the repression of transcriptionally competent genes in human Jurkat lymphoid cells. Rios-Avila L; Pestinger V; Zempleni J J Nutr Biochem; 2012 Dec; 23(12):1559-64. PubMed ID: 22192339 [TBL] [Abstract][Full Text] [Related]
10. The role of holocarboxylase synthetase in genome stability is mediated partly by epigenomic synergies between methylation and biotinylation events. Zempleni J; Li Y; Xue J; Cordonier EL Epigenetics; 2011 Jul; 6(7):892-4. PubMed ID: 21555910 [TBL] [Abstract][Full Text] [Related]
11. Holocarboxylase synthetase synergizes with methyl CpG binding protein 2 and DNA methyltransferase 1 in the transcriptional repression of long-terminal repeats. Xue J; Wijeratne SS; Zempleni J Epigenetics; 2013 May; 8(5):504-11. PubMed ID: 23624957 [TBL] [Abstract][Full Text] [Related]
12. Trafficking and chromatin dynamics of holocarboxylase synthetase during development of Drosophila melanogaster. Reyes-Carmona S; Valadéz-Graham V; Aguilar-Fuentes J; Zurita M; León-Del-Río A Mol Genet Metab; 2011 Jul; 103(3):240-8. PubMed ID: 21463962 [TBL] [Abstract][Full Text] [Related]
13. Biotin regulates the expression of holocarboxylase synthetase in the miR-539 pathway in HEK-293 cells. Bao B; Rodriguez-Melendez R; Wijeratne SS; Zempleni J J Nutr; 2010 Sep; 140(9):1546-51. PubMed ID: 20592104 [TBL] [Abstract][Full Text] [Related]
14. Methyl Adenine Identification (MadID): High-Resolution Detection of Protein-DNA Interactions. Umlauf D; Sobecki M; Crabbe L Methods Mol Biol; 2020; 2175():123-138. PubMed ID: 32681488 [TBL] [Abstract][Full Text] [Related]
15. Susceptibility to heat stress and aberrant gene expression patterns in holocarboxylase synthetase-deficient Drosophila melanogaster are caused by decreased biotinylation of histones, not of carboxylases. Camporeale G; Zempleni J; Eissenberg JC J Nutr; 2007 Apr; 137(4):885-9. PubMed ID: 17374649 [TBL] [Abstract][Full Text] [Related]
16. N- and C-terminal domains in human holocarboxylase synthetase participate in substrate recognition. Hassan YI; Moriyama H; Olsen LJ; Bi X; Zempleni J Mol Genet Metab; 2009 Apr; 96(4):183-8. PubMed ID: 19157941 [TBL] [Abstract][Full Text] [Related]
17. Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Vogel MJ; Peric-Hupkes D; van Steensel B Nat Protoc; 2007; 2(6):1467-78. PubMed ID: 17545983 [TBL] [Abstract][Full Text] [Related]
18. Reduced histone biotinylation in multiple carboxylase deficiency patients: a nuclear role for holocarboxylase synthetase. Narang MA; Dumas R; Ayer LM; Gravel RA Hum Mol Genet; 2004 Jan; 13(1):15-23. PubMed ID: 14613969 [TBL] [Abstract][Full Text] [Related]
19. Dam mutants provide improved sensitivity and spatial resolution for profiling transcription factor binding. Szczesnik T; Ho JWK; Sherwood R Epigenetics Chromatin; 2019 Jun; 12(1):36. PubMed ID: 31196130 [TBL] [Abstract][Full Text] [Related]
20. Identification and mapping of open chromatin regions within a 140 kb polygenic locus of human chromosome 19 using E. coli Dam methylase. Bulanenkova S; Snezhkov E; Nikolaev L; Sverdlov E Genetica; 2007 May; 130(1):83-92. PubMed ID: 16897455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]