BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21303655)

  • 1. On the chemical mechanism of succinic semialdehyde dehydrogenase (GabD1) from Mycobacterium tuberculosis.
    de Carvalho LP; Ling Y; Shen C; Warren JD; Rhee KY
    Arch Biochem Biophys; 2011 May; 509(1):90-9. PubMed ID: 21303655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective determination of the catalytic cysteine pK
    Phonbuppha J; Maenpuen S; Munkajohnpong P; Chaiyen P; Tinikul R
    FEBS J; 2018 Jul; 285(13):2504-2519. PubMed ID: 29734522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic characterization and molecular modeling of NAD(P)(+)-dependent succinic semialdehyde dehydrogenase from Bacillus subtilis as an ortholog YneI.
    Park SA; Park YS; Lee KS
    J Microbiol Biotechnol; 2014 Jul; 24(7):954-8. PubMed ID: 24809290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insight into the substrate inhibition mechanism of NADP(+)-dependent succinic semialdehyde dehydrogenase from Streptococcus pyogenes.
    Jang EH; Park SA; Chi YM; Lee KS
    Biochem Biophys Res Commun; 2015 Jun; 461(3):487-93. PubMed ID: 25888791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic characterization and structural modeling of an NADP
    Wang X; Lai C; Lei G; Wang F; Long H; Wu X; Chen J; Huo G; Li Z
    Int J Biol Macromol; 2018 Mar; 108():615-624. PubMed ID: 29242124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and structural insights into enzymatic mechanism of succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142.
    Xie C; Li ZM; Bai F; Hu Z; Zhang W; Li Z
    PLoS One; 2020; 15(9):e0239372. PubMed ID: 32966327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and structural characterization for cofactor preference of succinic semialdehyde dehydrogenase from Streptococcus pyogenes.
    Jang EH; Park SA; Chi YM; Lee KS
    Mol Cells; 2014 Oct; 37(10):719-26. PubMed ID: 25256219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of succinic semialdehyde dehydrogenase from Aspergillus niger.
    Kumar S; Kumar S; Punekar NS
    Indian J Exp Biol; 2015 Feb; 53(2):67-74. PubMed ID: 25757236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saturation transfer difference NMR studies on substrates and inhibitors of succinic semialdehyde dehydrogenases.
    Jaeger M; Rothacker B; Ilg T
    Biochem Biophys Res Commun; 2008 Aug; 372(3):400-6. PubMed ID: 18474219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for a cofactor-dependent oxidation protection and catalysis of cyanobacterial succinic semialdehyde dehydrogenase.
    Park J; Rhee S
    J Biol Chem; 2013 May; 288(22):15760-70. PubMed ID: 23589281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and chemical mechanisms of shikimate dehydrogenase from Mycobacterium tuberculosis.
    Fonseca IO; Silva RG; Fernandes CL; de Souza ON; Basso LA; Santos DS
    Arch Biochem Biophys; 2007 Jan; 457(2):123-33. PubMed ID: 17178095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into NADP+/enzyme interactions.
    Langendorf CG; Key TL; Fenalti G; Kan WT; Buckle AM; Caradoc-Davies T; Tuck KL; Law RH; Whisstock JC
    PLoS One; 2010 Feb; 5(2):e9280. PubMed ID: 20174634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus.
    Esser D; Kouril T; Talfournier F; Polkowska J; Schrader T; Bräsen C; Siebers B
    Extremophiles; 2013 Mar; 17(2):205-16. PubMed ID: 23296511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Succinic semialdehyde dehydrogenases of Escherichia coli: their role in the degradation of p-hydroxyphenylacetate and gamma-aminobutyrate.
    Donnelly MI; Cooper RA
    Eur J Biochem; 1981 Jan; 113(3):555-61. PubMed ID: 7011797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP
    Kopečná M; Vigouroux A; Vilím J; Končitíková R; Briozzo P; Hájková E; Jašková L; von Schwartzenberg K; Šebela M; Moréra S; Kopečný D
    Plant J; 2017 Oct; 92(2):229-243. PubMed ID: 28749584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase.
    Tian J; Bryk R; Itoh M; Suematsu M; Nathan C
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10670-5. PubMed ID: 16027371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein (ACP) reductase: kinetic and chemical mechanisms.
    Silva RG; de Carvalho LP; Blanchard JS; Santos DS; Basso LA
    Biochemistry; 2006 Oct; 45(43):13064-73. PubMed ID: 17059223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and mechanistic characterization of the glyceraldehyde 3-phosphate dehydrogenase from Mycobacterium tuberculosis.
    Wolfson-Stofko B; Hadi T; Blanchard JS
    Arch Biochem Biophys; 2013 Dec; 540(1-2):53-61. PubMed ID: 24161676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and chemical mechanism of the dihydrofolate reductase from Mycobacterium tuberculosis.
    Czekster CM; Vandemeulebroucke A; Blanchard JS
    Biochemistry; 2011 Jan; 50(3):367-75. PubMed ID: 21138249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mitochondrial NADP+-dependent reductase related to the 4-aminobutyrate shunt. Purification, characterization, and mechanism.
    Hearl WG; Churchich JE
    J Biol Chem; 1985 Dec; 260(30):16361-6. PubMed ID: 4066712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.