BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21303688)

  • 1. Proteins responsible for lysogeny of deep-sea thermophilic bacteriophage GVE2 at high temperature.
    Song Q; Ye T; Zhang X
    Gene; 2011 Jun; 479(1-2):1-9. PubMed ID: 21303688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a novel portal protein from deep-sea thermophilic bacteriophage GVE2.
    Wang Y; Zhang X
    Gene; 2008 Sep; 421(1-2):61-6. PubMed ID: 18573317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-sea thermophilic Geobacillus bacteriophage GVE2 transcriptional profile and proteomic characterization of virions.
    Liu B; Zhang X
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):697-707. PubMed ID: 18636255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of bacteriophage GVE2 endolysin in host lysis at high temperatures.
    Jin M; Ye T; Zhang X
    Microbiology (Reading); 2013 Aug; 159(Pt 8):1597-1605. PubMed ID: 23782802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of tryptophol on the bacteriophage infection in high-temperature environment.
    Jin M; Xu C; Zhang X
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8101-11. PubMed ID: 25994257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of interactions between a deep-sea thermophilic bacteriophage and its host at high temperature.
    Wei D; Zhang X
    J Virol; 2010 Mar; 84(5):2365-73. PubMed ID: 20015994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of inhibition of host MreB on the infection of thermophilic phage GVE2 in high temperature environment.
    Jin M; Chen Y; Xu C; Zhang X
    Sci Rep; 2014 Apr; 4():4823. PubMed ID: 24769758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single independent operator sites are involved in the genetic switch of the Lactobacillus delbrueckii bacteriophage mv4.
    Coddeville M; Auvray F; Mikkonen M; Ritzenthaler P
    Virology; 2007 Aug; 364(2):256-68. PubMed ID: 17412387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a lysin from deep-sea thermophilic bacteriophage GVE2.
    Ye T; Zhang X
    Appl Microbiol Biotechnol; 2008 Mar; 78(4):635-41. PubMed ID: 18224315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a thermophilic bacteriophage of Geobacillus kaustophilus.
    Marks TJ; Hamilton PT
    Arch Virol; 2014 Oct; 159(10):2771-5. PubMed ID: 24796554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome analysis of deep-sea thermophilic phage D6E.
    Wang Y; Zhang X
    Appl Environ Microbiol; 2010 Dec; 76(23):7861-6. PubMed ID: 20889772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional analysis of the genetic elements involved in the lysogeny/lysis switch in the temperate lactococcal bacteriophage phiLC3, and identification of the Cro-like protein ORF76.
    Blatny JM; Ventura M; Rosenhaven EM; Risøen PA; Lunde M; Brüssow H; Nes IF
    Mol Genet Genomics; 2003 Jul; 269(4):487-98. PubMed ID: 12759744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of interactions between bacterial chaperone, aspartate aminotransferase, and viral protein during virus infection in high temperature environment: the interactions between bacterium and virus proteins.
    Chen Y; Wei D; Wang Y; Zhang X
    BMC Microbiol; 2013 Feb; 13():48. PubMed ID: 23442450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the lysogenic repressor (c) gene of the Pseudomonas aeruginosa transposable bacteriophage D3112.
    Salmon KA; Freedman O; Ritchings BW; DuBow MS
    Virology; 2000 Jun; 272(1):85-97. PubMed ID: 10873751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the lytic-lysogenic switch of the lactococcal bacteriophage Tuc2009.
    Kenny JG; Leach S; de la Hoz AB; Venema G; Kok J; Fitzgerald GF; Nauta A; Alonso JC; van Sinderen D
    Virology; 2006 Apr; 347(2):434-46. PubMed ID: 16410016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of a novel thymidylate synthase from deep-sea thermophilic bacteriophage Geobacillus virus E2.
    Wang Y; Zhang X
    Virus Genes; 2008 Oct; 37(2):218-24. PubMed ID: 18648921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of quaternary structure and functional domains of the CI repressor from bacteriophage TP901-1.
    Pedersen M; Lo Leggio L; Grossmann JG; Larsen S; Hammer K
    J Mol Biol; 2008 Feb; 376(4):983-96. PubMed ID: 18191944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of the genetic switch of bacteriophage TP901-1: A heteromer of CI and MOR ensures robust bistability.
    Nakanishi H; Pedersen M; Alsing AK; Sneppen K
    J Mol Biol; 2009 Nov; 394(1):15-28. PubMed ID: 19747486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysogenic virus-host interactions predominate at deep-sea diffuse-flow hydrothermal vents.
    Williamson SJ; Cary SC; Williamson KE; Helton RR; Bench SR; Winget D; Wommack KE
    ISME J; 2008 Nov; 2(11):1112-21. PubMed ID: 18719614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2.
    Zhang L; Huang Y; Xu D; Yang L; Qian K; Chang G; Gong Y; Zhou X; Ma K
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8003-12. PubMed ID: 27131500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.