These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21303740)

  • 1. Efficient computational methods for strongly coupled cardiac electromechanics.
    Land S; Niederer SA; Smith NP
    IEEE Trans Biomed Eng; 2012 May; 59(5):1219-28. PubMed ID: 21303740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved numerical method for strong coupling of excitation and contraction models in the heart.
    Niederer SA; Smith NP
    Prog Biophys Mol Biol; 2008; 96(1-3):90-111. PubMed ID: 17881038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electromechanical model of the heart for image analysis and simulation.
    Sermesant M; Delingette H; Ayache N
    IEEE Trans Med Imaging; 2006 May; 25(5):612-25. PubMed ID: 16689265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New developments in a strongly coupled cardiac electromechanical model.
    Nickerson D; Smith N; Hunter P
    Europace; 2005 Sep; 7 Suppl 2():118-27. PubMed ID: 16102509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Left ventricular muscle band (VMB): thoughts on its physiologic and clinical implications.
    Boineau JP
    Eur J Cardiothorac Surg; 2006 Apr; 29 Suppl 1():S56-60. PubMed ID: 16563793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects.
    Cherubini C; Filippi S; Nardinocchi P; Teresi L
    Prog Biophys Mol Biol; 2008; 97(2-3):562-73. PubMed ID: 18353430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of electromechanical propagation in the helical ventricular anatomy of the heart.
    Marcé-Nogué J; Fortuny G; Ballester-Rodés M; Carreras F; Roure F
    Comput Biol Med; 2013 Nov; 43(11):1698-703. PubMed ID: 24209915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations.
    Whiteley JP; Bishop MJ; Gavaghan DJ
    Bull Math Biol; 2007 Oct; 69(7):2199-225. PubMed ID: 17453303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale finite element analysis of the beating heart.
    McCulloch A; Waldman L; Rogers J; Guccione J
    Crit Rev Biomed Eng; 1992; 20(5-6):427-49. PubMed ID: 1486784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling total heart function.
    Hunter PJ; Pullan AJ; Smaill BH
    Annu Rev Biomed Eng; 2003; 5():147-77. PubMed ID: 14527312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dynamic double helical band as a model for cardiac pumping.
    Grosberg A; Gharib M
    Bioinspir Biomim; 2009 Jun; 4(2):026003. PubMed ID: 19478371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of bundle branch block on cardiac output: a whole heart simulation study.
    Vigmond EJ; Clements C; McQueen DM; Peskin CS
    Prog Biophys Mol Biol; 2008; 97(2-3):520-42. PubMed ID: 18384847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electromechanical left ventricular wedge model to study the effects of deformation on repolarization during heart failure.
    Rocha BM; Toledo EM; Barra LP; dos Santos RW
    Biomed Res Int; 2015; 2015():465014. PubMed ID: 26550570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of transmurally varying myocyte electromechanics in an integrated computational model.
    Campbell SG; Flaim SN; Leem CH; McCulloch AD
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1879):3361-80. PubMed ID: 18593662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart.
    Gurev V; Lee T; Constantino J; Arevalo H; Trayanova NA
    Biomech Model Mechanobiol; 2011 Jun; 10(3):295-306. PubMed ID: 20589408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
    Nash MP; Panfilov AV
    Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully coupled model for electromechanics of the heart.
    Xia H; Wong K; Zhao X
    Comput Math Methods Med; 2012; 2012():927279. PubMed ID: 23118801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Personalization of a cardiac electromechanical model using reduced order unscented Kalman filtering from regional volumes.
    Marchesseau S; Delingette H; Sermesant M; Cabrera-Lozoya R; Tobon-Gomez C; Moireau P; Figueras i Ventura RM; Lekadir K; Hernandez A; Garreau M; Donal E; Leclercq C; Duckett SG; Rhode K; Rinaldi CA; Frangi AF; Razavi R; Chapelle D; Ayache N
    Med Image Anal; 2013 Oct; 17(7):816-29. PubMed ID: 23707227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous measurement of blood and myocardial velocity in the rat heart by phase contrast MRI using sparse q-space sampling.
    Wise RG; Al-Shafei AI; Carpenter TA; Hall LD; Huang CL
    J Magn Reson Imaging; 2005 Nov; 22(5):614-27. PubMed ID: 16193471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.