These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 21303904)
1. Two pathways of sphingolipid biosynthesis are separated in the yeast Pichia pastoris. Ternes P; Wobbe T; Schwarz M; Albrecht S; Feussner K; Riezman I; Cregg JM; Heinz E; Riezman H; Feussner I; Warnecke D J Biol Chem; 2011 Apr; 286(13):11401-14. PubMed ID: 21303904 [TBL] [Abstract][Full Text] [Related]
2. Significance of the KlLAC1 gene in glucosylceramide production by Kluyveromyces lactis. Takakuwa N; Ohnishi M; Oda Y FEMS Yeast Res; 2008 Sep; 8(6):839-45. PubMed ID: 18631186 [TBL] [Abstract][Full Text] [Related]
3. Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Schorling S; Vallée B; Barz WP; Riezman H; Oesterhelt D Mol Biol Cell; 2001 Nov; 12(11):3417-27. PubMed ID: 11694577 [TBL] [Abstract][Full Text] [Related]
4. Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae. Kolaczkowski M; Kolaczkowska A; Gaigg B; Schneiter R; Moye-Rowley WS Eukaryot Cell; 2004 Aug; 3(4):880-92. PubMed ID: 15302821 [TBL] [Abstract][Full Text] [Related]
5. Syringomycin E inhibition of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with very-long-chain fatty acids and mannose- and phosphoinositol-containing head groups. Stock SD; Hama H; Radding JA; Young DA; Takemoto JY Antimicrob Agents Chemother; 2000 May; 44(5):1174-80. PubMed ID: 10770748 [TBL] [Abstract][Full Text] [Related]
6. The nuclear transcription factor Rtg1p functions as a cytosolic, post-transcriptional regulator in the methylotrophic yeast Dey T; Krishna Rao K; Khatun J; Rangarajan PN J Biol Chem; 2018 Oct; 293(43):16647-16660. PubMed ID: 30185617 [TBL] [Abstract][Full Text] [Related]
7. Identification of fungal sphingolipid C9-methyltransferases by phylogenetic profiling. Ternes P; Sperling P; Albrecht S; Franke S; Cregg JM; Warnecke D; Heinz E J Biol Chem; 2006 Mar; 281(9):5582-92. PubMed ID: 16339149 [TBL] [Abstract][Full Text] [Related]
8. Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays. Graf A; Gasser B; Dragosits M; Sauer M; Leparc GG; Tüchler T; Kreil DP; Mattanovich D BMC Genomics; 2008 Aug; 9():390. PubMed ID: 18713468 [TBL] [Abstract][Full Text] [Related]
9. CCZ1, MON1 and YPT7 genes are involved in pexophagy, the Cvt pathway and non-specific macroautophagy in the methylotrophic yeast Pichia pastoris. Polupanov AS; Nazarko VY; Sibirny AA Cell Biol Int; 2011 Apr; 35(4):311-9. PubMed ID: 21155714 [TBL] [Abstract][Full Text] [Related]
10. Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. Leipelt M; Warnecke D; Zähringer U; Ott C; Müller F; Hube B; Heinz E J Biol Chem; 2001 Sep; 276(36):33621-9. PubMed ID: 11443131 [TBL] [Abstract][Full Text] [Related]
11. Yeast sphingolipids do not need to contain very long chain fatty acids. Cerantola V; Vionnet C; Aebischer OF; Jenny T; Knudsen J; Conzelmann A Biochem J; 2007 Jan; 401(1):205-16. PubMed ID: 16987101 [TBL] [Abstract][Full Text] [Related]
12. An overview of sphingolipid metabolism: from synthesis to breakdown. Gault CR; Obeid LM; Hannun YA Adv Exp Med Biol; 2010; 688():1-23. PubMed ID: 20919643 [TBL] [Abstract][Full Text] [Related]
13. The budding yeast Pichia pastoris has a novel Sec23p homolog. Esaki M; Liu Y; Glick BS FEBS Lett; 2006 Oct; 580(22):5215-21. PubMed ID: 16962585 [TBL] [Abstract][Full Text] [Related]
14. Vitamin C stimulates sphingolipid production and markers of barrier formation in submerged human keratinocyte cultures. Uchida Y; Behne M; Quiec D; Elias PM; Holleran WM J Invest Dermatol; 2001 Nov; 117(5):1307-13. PubMed ID: 11710949 [TBL] [Abstract][Full Text] [Related]
15. Regulation of sphingolipid biosynthesis in the endoplasmic reticulum via signals from the plasma membrane in budding yeast. Ishino Y; Komatsu N; Sakata KT; Yoshikawa D; Tani M; Maeda T; Morishige K; Yoshizawa K; Tanaka N; Tabuchi M FEBS J; 2022 Jan; 289(2):457-472. PubMed ID: 34492164 [TBL] [Abstract][Full Text] [Related]
16. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. Guillas I; Kirchman PA; Chuard R; Pfefferli M; Jiang JC; Jazwinski SM; Conzelmann A EMBO J; 2001 Jun; 20(11):2655-65. PubMed ID: 11387200 [TBL] [Abstract][Full Text] [Related]
17. Ceramide/long-chain base phosphate rheostat in Saccharomyces cerevisiae: regulation of ceramide synthesis by Elo3p and Cka2p. Kobayashi SD; Nagiec MM Eukaryot Cell; 2003 Apr; 2(2):284-94. PubMed ID: 12684378 [TBL] [Abstract][Full Text] [Related]
19. Effect of expression of genes in the sphingolipid synthesis pathway on the biosynthesis of ceramide in Saccharomyces cerevisiae. Kim SK; Noh YH; Koo JR; Yun HS J Microbiol Biotechnol; 2010 Feb; 20(2):356-62. PubMed ID: 20208441 [TBL] [Abstract][Full Text] [Related]
20. Self-Protection against the Sphingolipid Biosynthesis Inhibitor Fumonisin B Janevska S; Ferling I; Jojić K; Rautschek J; Hoefgen S; Proctor RH; Hillmann F; Valiante V mBio; 2020 Jun; 11(3):. PubMed ID: 32546615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]