These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 21303904)
21. Ceramide signals for initiation of yeast mating-specific cell cycle arrest. Villasmil ML; Francisco J; Gallo-Ebert C; Donigan M; Liu HY; Brower M; Nickels JT Cell Cycle; 2016; 15(3):441-54. PubMed ID: 26726837 [TBL] [Abstract][Full Text] [Related]
22. High-level production of tetraacetyl phytosphingosine (TAPS) by combined genetic engineering of sphingoid base biosynthesis and L-serine availability in the non-conventional yeast Pichia ciferrii. Schorsch C; Köhler T; Andrea H; Boles E Metab Eng; 2012 Mar; 14(2):172-84. PubMed ID: 22178746 [TBL] [Abstract][Full Text] [Related]
23. Identification of key DNA elements involved in promoter recognition by Mxr1p, a master regulator of methanol utilization pathway in Pichia pastoris. Kranthi BV; Kumar R; Kumar NV; Rao DN; Rangarajan PN Biochim Biophys Acta; 2009; 1789(6-8):460-8. PubMed ID: 19450714 [TBL] [Abstract][Full Text] [Related]
24. Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. Nagiec MM; Nagiec EE; Baltisberger JA; Wells GB; Lester RL; Dickson RC J Biol Chem; 1997 Apr; 272(15):9809-17. PubMed ID: 9092515 [TBL] [Abstract][Full Text] [Related]
25. Distinct roles for de novo versus hydrolytic pathways of sphingolipid biosynthesis in Saccharomyces cerevisiae. Cowart LA; Okamoto Y; Lu X; Hannun YA Biochem J; 2006 Feb; 393(Pt 3):733-40. PubMed ID: 16201964 [TBL] [Abstract][Full Text] [Related]
26. Formation of glucosylceramide and sterol glucoside by a UDP-glucose-dependent glucosylceramide synthase from cotton expressed in Pichia pastoris. Hillig I; Leipelt M; Ott C; Zähringer U; Warnecke D; Heinz E FEBS Lett; 2003 Oct; 553(3):365-9. PubMed ID: 14572652 [TBL] [Abstract][Full Text] [Related]
28. Biological Roles Played by Sphingolipids in Dimorphic and Filamentous Fungi. Fernandes CM; Goldman GH; Del Poeta M mBio; 2018 May; 9(3):. PubMed ID: 29764947 [TBL] [Abstract][Full Text] [Related]
29. Functional characterization of a higher plant sphingolipid Delta4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Michaelson LV; Zäuner S; Markham JE; Haslam RP; Desikan R; Mugford S; Albrecht S; Warnecke D; Sperling P; Heinz E; Napier JA Plant Physiol; 2009 Jan; 149(1):487-98. PubMed ID: 18978071 [TBL] [Abstract][Full Text] [Related]
30. Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae. Jenkins GM; Hannun YA J Biol Chem; 2001 Mar; 276(11):8574-81. PubMed ID: 11056159 [TBL] [Abstract][Full Text] [Related]
31. Role of Naranjo CA; Jivan AD; Vo MN; de Sa Campos KH; Deyarmin JS; Hekman RM; Uribe C; Hang A; Her K; Fong MM; Choi JJ; Chou C; Rabara TR; Myers G; Moua P; Thor D; Risser DD; Vierra CA; Franz AH; Lin-Cereghino J; Lin-Cereghino GP Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31585990 [TBL] [Abstract][Full Text] [Related]
32. Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis. Heyman JA; Monosov E; Subramani S J Cell Biol; 1994 Dec; 127(5):1259-73. PubMed ID: 7962088 [TBL] [Abstract][Full Text] [Related]
35. Isolation and characterization of the plasma membrane from the yeast Pichia pastoris. Grillitsch K; Tarazona P; Klug L; Wriessnegger T; Zellnig G; Leitner E; Feussner I; Daum G Biochim Biophys Acta; 2014 Jul; 1838(7):1889-97. PubMed ID: 24680652 [TBL] [Abstract][Full Text] [Related]
36. Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Clare JJ; Romanos MA; Rayment FB; Rowedder JE; Smith MA; Payne MM; Sreekrishna K; Henwood CA Gene; 1991 Sep; 105(2):205-12. PubMed ID: 1937016 [TBL] [Abstract][Full Text] [Related]
37. Existence of cerebroside in Saccharomyces kluyveri and its related species. Takakuwa N; Kinoshita M; Oda Y; Ohnishi M FEMS Yeast Res; 2002 Dec; 2(4):533-8. PubMed ID: 12702269 [TBL] [Abstract][Full Text] [Related]
38. Metabolic engineering of the non-conventional yeast Pichia ciferrii for production of rare sphingoid bases. Börgel D; van den Berg M; Hüller T; Andrea H; Liebisch G; Boles E; Schorsch C; van der Pol R; Arink A; Boogers I; van der Hoeven R; Korevaar K; Farwick M; Köhler T; Schaffer S Metab Eng; 2012 Jul; 14(4):412-26. PubMed ID: 22449569 [TBL] [Abstract][Full Text] [Related]
39. A mass spectrometry-based method for the assay of ceramide synthase substrate specificity. Luttgeharm KD; Cahoon EB; Markham JE Anal Biochem; 2015 Jun; 478():96-101. PubMed ID: 25725359 [TBL] [Abstract][Full Text] [Related]
40. A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase. Nagiec MM; Wells GB; Lester RL; Dickson RC J Biol Chem; 1993 Oct; 268(29):22156-63. PubMed ID: 8408076 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]