These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21304454)

  • 1. Pseudomonas aeruginosa and Saccharomyces cerevisiae biofilm in flow cells.
    Weiss Nielsen M; Sternberg C; Molin S; Regenberg B
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions.
    Zhang W; Sileika TS; Chen C; Liu Y; Lee J; Packman AI
    Biotechnol Bioeng; 2011 Nov; 108(11):2571-82. PubMed ID: 21656713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy.
    Pamp SJ; Sternberg C; Tolker-Nielsen T
    Cytometry A; 2009 Feb; 75(2):90-103. PubMed ID: 19051241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms.
    Salek MM; Jones SM; Martinuzzi RJ
    Biofouling; 2009 Nov; 25(8):711-25. PubMed ID: 20183130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gentian violet and ferric ammonium citrate disrupt Pseudomonas aeruginosa biofilms.
    Wang EW; Agostini G; Olomu O; Runco D; Jung JY; Chole RA
    Laryngoscope; 2008 Nov; 118(11):2050-6. PubMed ID: 18849857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro collagen perfusion wound biofilm model; with applications for antimicrobial studies and microbial metabolomics.
    Slade EA; Thorn RMS; Young A; Reynolds DM
    BMC Microbiol; 2019 Dec; 19(1):310. PubMed ID: 31888471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy.
    Tolker-Nielsen T; Sternberg C
    Methods Mol Biol; 2014; 1149():615-29. PubMed ID: 24818937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-culture models of Pseudomonas aeruginosa biofilms grown on live human airway cells.
    Moreau-Marquis S; Redelman CV; Stanton BA; Anderson GG
    J Vis Exp; 2010 Oct; (44):. PubMed ID: 20972407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms.
    Klausen M; Gjermansen M; Kreft JU; Tolker-Nielsen T
    FEMS Microbiol Lett; 2006 Aug; 261(1):1-11. PubMed ID: 16842351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of fluid flow conditions on interactions between species in biofilms.
    Zhang W; Sileika T; Packman AI
    FEMS Microbiol Ecol; 2013 May; 84(2):344-54. PubMed ID: 23278485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for characterizing the co-development of biofilm and habitat heterogeneity.
    Li X; Song JL; Culotti A; Zhang W; Chopp DL; Lu N; Packman AI
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25866914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli O157:H7 requires colonizing partner to adhere and persist in a capillary flow cell.
    Klayman BJ; Volden PA; Stewart PS; Camper AK
    Environ Sci Technol; 2009 Mar; 43(6):2105-11. PubMed ID: 19368221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Monitoring of
    Zaborskyte G; Andersen JB; Kragh KN; Ciofu O
    Antimicrob Agents Chemother; 2017 Mar; 61(3):. PubMed ID: 27993856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of change in biofilm architecture by nutrient concentration using a multichannel microdevice flow system.
    Sanchez Z; Tani A; Suzuki N; Kariyama R; Kumon H; Kimbara K
    J Biosci Bioeng; 2013 Mar; 115(3):326-31. PubMed ID: 23085416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis.
    Kirov SM; Webb JS; O'May CY; Reid DW; Woo JKK; Rice SA; Kjelleberg S
    Microbiology (Reading); 2007 Oct; 153(Pt 10):3264-3274. PubMed ID: 17906126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung.
    Dingemans J; Monsieurs P; Yu SH; Crabbé A; Förstner KU; Malfroot A; Cornelis P; Van Houdt R
    mBio; 2016 Aug; 7(4):. PubMed ID: 27486191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the population dynamics within a Pseudomonas aeruginosa biofilm using a flow based biofilm model system and flow cytometric evaluation of cellular physiology.
    Wojciech J; Kamila M; Wojciech B
    Biofouling; 2018 Sep; 34(8):835-850. PubMed ID: 30332894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistence of biofilm-associated Escherichia coli and Pseudomonas aeruginosa in groundwater and treated effluent in a laboratory model system.
    Banning N; Toze S; Mee BJ
    Microbiology (Reading); 2003 Jan; 149(Pt 1):47-55. PubMed ID: 12576579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of biofilm cell quantification methods for drinking water distribution systems.
    Waller SA; Packman AI; Hausner M
    J Microbiol Methods; 2018 Jan; 144():8-21. PubMed ID: 29111400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas aeruginosa biofilm infections: from molecular biofilm biology to new treatment possibilities.
    Tolker-Nielsen T
    APMIS Suppl; 2014 Dec; (138):1-51. PubMed ID: 25399808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.