These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21304464)

  • 41. Fluorescence "in situ" hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa.
    Nistico L; Gieseke A; Stoodley P; Hall-Stoodley L; Kerschner JE; Ehrlich GD
    Methods Mol Biol; 2009; 493():191-213. PubMed ID: 18839349
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy.
    Pamp SJ; Sternberg C; Tolker-Nielsen T
    Cytometry A; 2009 Feb; 75(2):90-103. PubMed ID: 19051241
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolving concepts in biofilm infections.
    Hall-Stoodley L; Stoodley P
    Cell Microbiol; 2009 Jul; 11(7):1034-43. PubMed ID: 19374653
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physical Determinants of Amyloid Assembly in Biofilm Formation.
    Andreasen M; Meisl G; Taylor JD; Michaels TCT; Levin A; Otzen DE; Chapman MR; Dobson CM; Matthews SJ; Knowles TPJ
    mBio; 2019 Jan; 10(1):. PubMed ID: 30622185
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Environmental signals and regulatory pathways that influence biofilm formation.
    Stanley NR; Lazazzera BA
    Mol Microbiol; 2004 May; 52(4):917-24. PubMed ID: 15130114
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biofilm Formation Drives Transfer of the Conjugative Element ICE
    Lécuyer F; Bourassa JS; Gélinas M; Charron-Lamoureux V; Burrus V; Beauregard PB
    mSphere; 2018 Sep; 3(5):. PubMed ID: 30258041
    [TBL] [Abstract][Full Text] [Related]  

  • 47. What drives bacteria to produce a biofilm?
    Jefferson KK
    FEMS Microbiol Lett; 2004 Jul; 236(2):163-73. PubMed ID: 15251193
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization and application of a flow system for in vitro multispecies oral biofilm formation.
    Blanc V; Isabal S; Sánchez MC; Llama-Palacios A; Herrera D; Sanz M; León R
    J Periodontal Res; 2014 Jun; 49(3):323-32. PubMed ID: 23815431
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies.
    Taylor PK; Yeung AT; Hancock RE
    J Biotechnol; 2014 Dec; 191():121-30. PubMed ID: 25240440
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Environmental conditions shape the biofilm of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125.
    Ricciardelli A; Casillo A; Vergara A; Balasco N; Corsaro MM; Tutino ML; Parrilli E
    Microbiol Res; 2019 Jan; 218():66-75. PubMed ID: 30454660
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatio-temporal formation of biofilms and extracellular matrix analysis in Azospirillum brasilense.
    Viruega-Góngora VI; Acatitla-Jácome IS; Reyes-Carmona SR; Baca BE; Ramírez-Mata A
    FEMS Microbiol Lett; 2020 Feb; 367(4):. PubMed ID: 32105306
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems.
    Neu TR; Swerhone GDW; Lawrence JR
    Microbiology (Reading); 2001 Feb; 147(Pt 2):299-313. PubMed ID: 11158347
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced analysis of bacteria susceptibility in connected biofilms.
    Sommerfeld Ross S; Reinhardt JM; Fiegel J
    J Microbiol Methods; 2012 Jul; 90(1):9-14. PubMed ID: 22542520
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anisotropic nutrient transport in three-dimensional single species bacterial biofilms.
    Van Wey AS; Cookson AL; Soboleva TK; Roy NC; McNabb WC; Bridier A; Briandet R; Shorten PR
    Biotechnol Bioeng; 2012 May; 109(5):1280-92. PubMed ID: 22124974
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies.
    de la Fuente-Núñez C; Reffuveille F; Fernández L; Hancock RE
    Curr Opin Microbiol; 2013 Oct; 16(5):580-9. PubMed ID: 23880136
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Innate and induced resistance mechanisms of bacterial biofilms.
    Anderson GG; O'Toole GA
    Curr Top Microbiol Immunol; 2008; 322():85-105. PubMed ID: 18453273
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of spatial distributions of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy.
    Hu Z; Hidalgo G; Houston PL; Hay AG; Shuler ML; Abruña HD; Ghiorse WC; Lion LW
    Appl Environ Microbiol; 2005 Jul; 71(7):4014-21. PubMed ID: 16000816
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vancomycin promotes the bacterial autolysis, release of extracellular DNA, and biofilm formation in vancomycin-non-susceptible Staphylococcus aureus.
    Hsu CY; Lin MH; Chen CC; Chien SC; Cheng YH; Su IN; Shu JC
    FEMS Immunol Med Microbiol; 2011 Nov; 63(2):236-47. PubMed ID: 22077227
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy.
    McLean JS; Ona ON; Majors PD
    ISME J; 2008 Feb; 2(2):121-31. PubMed ID: 18253132
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms.
    Almatroudi A; Tahir S; Hu H; Chowdhury D; Gosbell IB; Jensen SO; Whiteley GS; Deva AK; Glasbey T; Vickery K
    J Hosp Infect; 2018 Feb; 98(2):161-167. PubMed ID: 28919336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.