These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 21304956)

  • 1. Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses.
    Foscarin S; Ponchione D; Pajaj E; Leto K; Gawlak M; Wilczynski GM; Rossi F; Carulli D
    PLoS One; 2011 Jan; 6(1):e16666. PubMed ID: 21304956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perineuronal Nets in the Deep Cerebellar Nuclei Regulate GABAergic Transmission and Delay Eyeblink Conditioning.
    Hirono M; Watanabe S; Karube F; Fujiyama F; Kawahara S; Nagao S; Yanagawa Y; Misonou H
    J Neurosci; 2018 Jul; 38(27):6130-6144. PubMed ID: 29858484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of semaphorin3A in perineuronal nets during structural plasticity in the adult cerebellum.
    Carulli D; Foscarin S; Faralli A; Pajaj E; Rossi F
    Mol Cell Neurosci; 2013 Nov; 57():10-22. PubMed ID: 23999154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice.
    Blosa M; Bursch C; Weigel S; Holzer M; Jäger C; Janke C; Matthews RT; Arendt T; Morawski M
    Neural Plast; 2016; 2016():2828536. PubMed ID: 26819763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extracellular matrix glycoprotein tenascin-C and matrix metalloproteinases modify cerebellar structural plasticity by exposure to an enriched environment.
    Stamenkovic V; Stamenkovic S; Jaworski T; Gawlak M; Jovanovic M; Jakovcevski I; Wilczynski GM; Kaczmarek L; Schachner M; Radenovic L; Andjus PR
    Brain Struct Funct; 2017 Jan; 222(1):393-415. PubMed ID: 27089885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulatory Effects of Monoamines and Perineuronal Nets on Output of Cerebellar Purkinje Cells.
    Hirono M; Karube F; Yanagawa Y
    Front Neural Circuits; 2021; 15():661899. PubMed ID: 34194302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hapln4/Bral2 is a selective regulator for formation and transmission of GABAergic synapses between Purkinje and deep cerebellar nuclei neurons.
    Edamatsu M; Miyano R; Fujikawa A; Fujii F; Hori T; Sakaba T; Oohashi T
    J Neurochem; 2018 Dec; 147(6):748-763. PubMed ID: 30125937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity.
    Carulli D; Pizzorusso T; Kwok JC; Putignano E; Poli A; Forostyak S; Andrews MR; Deepa SS; Glant TT; Fawcett JW
    Brain; 2010 Aug; 133(Pt 8):2331-47. PubMed ID: 20566484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity.
    Carulli D; Verhaagen J
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33670945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of intrinsic regenerative properties and axonal plasticity in cerebellar Purkinje cells.
    Rossi F; Buffo A; Strata P
    Restor Neurol Neurosci; 2001; 19(1-2):85-94. PubMed ID: 12085795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Looking Inside the Matrix: Perineuronal Nets in Plasticity, Maladaptive Plasticity and Neurological Disorders.
    De Luca C; Papa M
    Neurochem Res; 2016 Jul; 41(7):1507-15. PubMed ID: 26935742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebellar plasticity and associative memories are controlled by perineuronal nets.
    Carulli D; Broersen R; de Winter F; Muir EM; Mešković M; de Waal M; de Vries S; Boele HJ; Canto CB; De Zeeuw CI; Verhaagen J
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6855-6865. PubMed ID: 32152108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular matrix and perineuronal nets in CNS repair.
    Kwok JC; Dick G; Wang D; Fawcett JW
    Dev Neurobiol; 2011 Nov; 71(11):1073-89. PubMed ID: 21898855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of N-Acetylgalactosamine-Positive Perineuronal Nets in the Macaque Brain: Anatomy and Implications.
    Mueller AL; Davis A; Sovich S; Carlson SS; Robinson FR
    Neural Plast; 2016; 2016():6021428. PubMed ID: 26881119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and Functional Modulation of Perineuronal Nets: In Search of Important Players with Highlight on Tenascins.
    Jakovljević A; Tucić M; Blažiková M; Korenić A; Missirlis Y; Stamenković V; Andjus P
    Cells; 2021 May; 10(6):. PubMed ID: 34072323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components.
    Carulli D; Rhodes KE; Brown DJ; Bonnert TP; Pollack SJ; Oliver K; Strata P; Fawcett JW
    J Comp Neurol; 2006 Feb; 494(4):559-77. PubMed ID: 16374793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GAP-43 overexpression in adult mouse Purkinje cells overrides myelin-derived inhibition of neurite growth.
    Gianola S; Rossi F
    Eur J Neurosci; 2004 Feb; 19(4):819-30. PubMed ID: 15009129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular Matrix in Neural Plasticity and Regeneration.
    Chelyshev YA; Kabdesh IM; Mukhamedshina YO
    Cell Mol Neurobiol; 2022 Apr; 42(3):647-664. PubMed ID: 33128689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurite-myelin interaction in the control of purkinje axon growth and regeneration.
    Gianola S; Rossi F
    Ann N Y Acad Sci; 2005 Jun; 1048():141-8. PubMed ID: 16154928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axon initial segment ensheathed by extracellular matrix in perineuronal nets.
    Brückner G; Szeöke S; Pavlica S; Grosche J; Kacza J
    Neuroscience; 2006; 138(2):365-75. PubMed ID: 16427210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.