These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 21305028)

  • 1. ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads.
    Miller CA; Hampton O; Coarfa C; Milosavljevic A
    PLoS One; 2011 Jan; 6(1):e16327. PubMed ID: 21305028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pash 3.0: A versatile software package for read mapping and integrative analysis of genomic and epigenomic variation using massively parallel DNA sequencing.
    Coarfa C; Yu F; Miller CA; Chen Z; Harris RA; Milosavljevic A
    BMC Bioinformatics; 2010 Nov; 11():572. PubMed ID: 21092284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QuorUM: An Error Corrector for Illumina Reads.
    Marçais G; Yorke JA; Zimin A
    PLoS One; 2015; 10(6):e0130821. PubMed ID: 26083032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MixClone: a mixture model for inferring tumor subclonal populations.
    Li Y; Xie X
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S1. PubMed ID: 25707430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MetaCNV - a consensus approach to infer accurate copy numbers from low coverage data.
    Friedrich S; Barbulescu R; Helleday T; Sonnhammer ELL
    BMC Med Genomics; 2020 Jun; 13(1):76. PubMed ID: 32487140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing.
    Talevich E; Shain AH; Botton T; Bastian BC
    PLoS Comput Biol; 2016 Apr; 12(4):e1004873. PubMed ID: 27100738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical discovery of large-scale and focal copy number alterations in low-coverage cancer genomes.
    Khalil AIS; Khyriem C; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Apr; 21(1):147. PubMed ID: 32299346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Somatically-Acquired Copy Number Alterations in Chronic Lymphocytic Leukaemia Using Shallow Whole Genome Sequencing.
    Parker H; Carr L; Syeda S; Bryant D; Strefford JC
    Methods Mol Biol; 2019; 1881():327-353. PubMed ID: 30350215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution mapping of copy-number alterations with massively parallel sequencing.
    Chiang DY; Getz G; Jaffe DB; O'Kelly MJ; Zhao X; Carter SL; Russ C; Nusbaum C; Meyerson M; Lander ES
    Nat Methods; 2009 Jan; 6(1):99-103. PubMed ID: 19043412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNAmet: an R package for integrating copy number, methylation and expression data.
    Louhimo R; Hautaniemi S
    Bioinformatics; 2011 Mar; 27(6):887-8. PubMed ID: 21228048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting highly differentiated copy-number variants from pooled population sequencing.
    Schrider DR; Begun DJ; Hahn MW
    Pac Symp Biocomput; 2013; ():344-55. PubMed ID: 23424139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patchwork: allele-specific copy number analysis of whole-genome sequenced tumor tissue.
    Mayrhofer M; DiLorenzo S; Isaksson A
    Genome Biol; 2013 Mar; 14(3):R24. PubMed ID: 23531354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MethGo: a comprehensive tool for analyzing whole-genome bisulfite sequencing data.
    Liao WW; Yen MR; Ju E; Hsu FM; Lam L; Chen PY
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S11. PubMed ID: 26680022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational methods for discovering structural variation with next-generation sequencing.
    Medvedev P; Stanciu M; Brudno M
    Nat Methods; 2009 Nov; 6(11 Suppl):S13-20. PubMed ID: 19844226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using SAAS-CNV to Detect and Characterize Somatic Copy Number Alterations in Cancer Genomes from Next Generation Sequencing and SNP Array Data.
    Zhang Z; Hao K
    Methods Mol Biol; 2018; 1833():29-47. PubMed ID: 30039361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic resolution of multi-mapping reads in massively parallel sequencing data using MuMRescueLite.
    Hashimoto T; de Hoon MJ; Grimmond SM; Daub CO; Hayashizaki Y; Faulkner GJ
    Bioinformatics; 2009 Oct; 25(19):2613-4. PubMed ID: 19605420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data.
    Korbel JO; Abyzov A; Mu XJ; Carriero N; Cayting P; Zhang Z; Snyder M; Gerstein MB
    Genome Biol; 2009 Feb; 10(2):R23. PubMed ID: 19236709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MethylStar: A fast and robust pre-processing pipeline for bulk or single-cell whole-genome bisulfite sequencing data.
    Shahryary Y; Hazarika RR; Johannes F
    BMC Genomics; 2020 Jul; 21(1):479. PubMed ID: 32660416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution.
    Ge H; Liu K; Juan T; Fang F; Newman M; Hoeck W
    Bioinformatics; 2011 Jul; 27(14):1922-8. PubMed ID: 21593131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.