These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21305061)

  • 1. Executive decision-making in the domestic sheep.
    Morton AJ; Avanzo L
    PLoS One; 2011 Jan; 6(1):e15752. PubMed ID: 21305061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring executive function in sheep (Ovis aries) using visual stimuli in a semi-automated operant system.
    Sorby-Adams AJ; Schneider WT; Goncalves RP; Knolle F; Morton AJ
    J Neurosci Methods; 2021 Mar; 351():109009. PubMed ID: 33340554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mobile, high-throughput semi-automated system for testing cognition in large non-primate animal models of Huntington disease.
    McBride SD; Perentos N; Morton AJ
    J Neurosci Methods; 2016 May; 265():25-33. PubMed ID: 26327320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive development in macaques: attentional set-shifting in juvenile and adult rhesus monkeys.
    Weed MR; Bryant R; Perry S
    Neuroscience; 2008 Nov; 157(1):22-8. PubMed ID: 18805462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans.
    Rogers RD; Andrews TC; Grasby PM; Brooks DJ; Robbins TW
    J Cogn Neurosci; 2000 Jan; 12(1):142-62. PubMed ID: 10769312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired executive function following ischemic stroke in the rat medial prefrontal cortex.
    Cordova CA; Jackson D; Langdon KD; Hewlett KA; Corbett D
    Behav Brain Res; 2014 Jan; 258():106-11. PubMed ID: 24144544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attentional Set-Shifting Across Species.
    Brown VJ; Tait DS
    Curr Top Behav Neurosci; 2016; 28():363-95. PubMed ID: 26873018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indices of comparative cognition: assessing animal models of human brain function.
    McBride SD; Morton AJ
    Exp Brain Res; 2018 Dec; 236(12):3379-3390. PubMed ID: 30267138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ultimate intra-/extra-dimensional attentional set-shifting task for mice.
    Scheggia D; Bebensee A; Weinberger DR; Papaleo F
    Biol Psychiatry; 2014 Apr; 75(8):660-70. PubMed ID: 23810621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination, reversal, and shift learning in Huntington's disease: mechanisms of impaired response selection.
    Lawrence AD; Sahakian BJ; Rogers RD; Hodge JR; Robbins TW
    Neuropsychologia; 1999 Nov; 37(12):1359-74. PubMed ID: 10606011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The utilisation of operant delayed matching and non-matching to position for probing cognitive flexibility and working memory in mouse models of Huntington's disease.
    Yhnell E; Dunnett SB; Brooks SP
    J Neurosci Methods; 2016 May; 265():72-80. PubMed ID: 26321735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set-shifting in the rat.
    Tait DS; Phillips JM; Blackwell AD; Brown VJ
    Neuroscience; 2017 Mar; 345():287-296. PubMed ID: 27522961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fos expression in the brains of rats performing an attentional set-shifting task.
    Burnham KE; Bannerman DM; Dawson LA; Southam E; Sharp T; Baxter MG
    Neuroscience; 2010 Dec; 171(2):485-95. PubMed ID: 20849932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attentional updating and monitoring and affective shifting are impacted independently by aging in macaque monkeys.
    Gray DT; Smith AC; Burke SN; Gazzaley A; Barnes CA
    Behav Brain Res; 2017 Mar; 322(Pt B):329-338. PubMed ID: 27368416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive deficits in transgenic and knock-in HTT mice parallel those in Huntington's disease.
    Farrar AM; Murphy CA; Paterson NE; Oakeshott S; He D; Alosio W; McConnell K; Menalled LB; Ramboz S; Park LC; Howland D; Brunner D
    J Huntingtons Dis; 2014; 3(2):145-58. PubMed ID: 25062858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tacrine improves reversal learning in older rats.
    Tait DS; Chase EA; Brown VJ
    Neuropharmacology; 2013 Oct; 73():284-9. PubMed ID: 23770259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attentional set-shifting in rodents: a review of behavioural methods and pharmacological results.
    Tait DS; Chase EA; Brown VJ
    Curr Pharm Des; 2014; 20(31):5046-59. PubMed ID: 24345263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Brained Animal Models of Huntington's Disease: Sheep.
    Morton AJ
    Methods Mol Biol; 2018; 1780():221-239. PubMed ID: 29856022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Operant Intra-/Extra-dimensional Set-shift Task for Mice.
    Scheggia D; Papaleo F
    J Vis Exp; 2016 Jan; (107):e53503. PubMed ID: 26863331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal changes in the fronto-striatal network are associated with executive dysfunction and behavioral dysregulation in Huntington's disease: 30 months IMAGE-HD data.
    Domínguez D JF; Poudel G; Stout JC; Gray M; Chua P; Borowsky B; Egan GF; Georgiou-Karistianis N
    Cortex; 2017 Jul; 92():139-149. PubMed ID: 28482181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.