BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21305070)

  • 1. Electrostatic effects on (di)terpene synthase product outcome.
    Zhou K; Peters RJ
    Chem Commun (Camb); 2011 Apr; 47(14):4074-80. PubMed ID: 21305070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly-Line Catalysis in Bifunctional Terpene Synthases.
    Faylo JL; Ronnebaum TA; Christianson DW
    Acc Chem Res; 2021 Oct; 54(20):3780-3791. PubMed ID: 34254507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing complexity of a diterpene synthase reaction with a single residue switch.
    Morrone D; Xu M; Fulton DB; Determan MK; Peters RJ
    J Am Chem Soc; 2008 Apr; 130(16):5400-1. PubMed ID: 18366162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis.
    Driller R; Janke S; Fuchs M; Warner E; Mhashal AR; Major DT; Christmann M; Brück T; Loll B
    Nat Commun; 2018 Sep; 9(1):3971. PubMed ID: 30266969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal Structure and Mechanistic Molecular Modeling Studies of
    Zhang Y; Prach LM; O'Brien TE; DiMaio F; Prigozhin DM; Corn JE; Alber T; Siegel JB; Tantillo DJ
    Biochemistry; 2020 Dec; 59(47):4507-4515. PubMed ID: 33182997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism Underlying Anti-Markovnikov Addition in the Reaction of Pentalenene Synthase.
    Matos JO; Kumar RP; Ma AC; Patterson M; Krauss IJ; Oprian DD
    Biochemistry; 2020 Sep; 59(35):3271-3283. PubMed ID: 32786410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Study of Sesterfisherol Biosynthesis: Computational Prediction of Key Amino Acid Residue in Terpene Synthase.
    Sato H; Narita K; Minami A; Yamazaki M; Wang C; Suemune H; Nagano S; Tomita T; Oikawa H; Uchiyama M
    Sci Rep; 2018 Feb; 8(1):2473. PubMed ID: 29410538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Following evolution's lead to a single residue switch for diterpene synthase product outcome.
    Xu M; Wilderman PR; Peters RJ
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7397-401. PubMed ID: 17456599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular recognition of the substrate diphosphate group governs product diversity in trichodiene synthase mutants.
    Vedula LS; Rynkiewicz MJ; Pyun HJ; Coates RM; Cane DE; Christianson DW
    Biochemistry; 2005 Apr; 44(16):6153-63. PubMed ID: 15835903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing of the plasticity of the active site in pinene synthase elucidates its potential evolutionary mechanism.
    Xu J; Peng G; Xu J; Li Y; Tong L; Yang D
    Phytochemistry; 2021 Jan; 181():112573. PubMed ID: 33142148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The T296V Mutant of Amorpha-4,11-diene Synthase Is Defective in Allylic Diphosphate Isomerization but Retains the Ability To Cyclize the Intermediate (3R)-Nerolidyl Diphosphate to Amorpha-4,11-diene.
    Li Z; Gao R; Hao Q; Zhao H; Cheng L; He F; Liu L; Liu X; Chou WK; Zhu H; Cane DE
    Biochemistry; 2016 Dec; 55(48):6599-6604. PubMed ID: 27933789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1,10/1,11-Cyclization catalyzed by diverged plant sesquiterpene synthases is dependent on a single residue.
    Huang JQ; Li DM; Li JX; Lin JL; Tian X; Wang LJ; Chen XY; Fang X
    Org Biomol Chem; 2021 Aug; 19(30):6650-6656. PubMed ID: 34264250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sesquiterpene Synthase-Catalysed Formation of a New Medium-Sized Cyclic Terpenoid Ether from Farnesyl Diphosphate Analogues.
    Huynh F; Grundy DJ; Jenkins RL; Miller DJ; Allemann RK
    Chembiochem; 2018 Sep; 19(17):1834-1838. PubMed ID: 29802753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate geometry controls the cyclization cascade in multiproduct terpene synthases from Zea mays.
    Vattekkatte A; Gatto N; Köllner TG; Degenhardt J; Gershenzon J; Boland W
    Org Biomol Chem; 2015 Jun; 13(21):6021-30. PubMed ID: 25940560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of monoterpene cyclization: stereochemical aspects of the transformation of noncyclizable substrate analogs by recombinant (-)-limonene synthase, (+)-bornyl diphosphate synthase, and (-)-pinene synthase.
    Schwab W; Williams DC; Davis EM; Croteau R
    Arch Biochem Biophys; 2001 Aug; 392(1):123-36. PubMed ID: 11469803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Aromatic Cluster in the Active Site of
    Ronnebaum TA; Gardner SM; Christianson DW
    Biochemistry; 2020 Dec; 59(50):4744-4754. PubMed ID: 33270439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single residue switch converts abietadiene synthase into a pimaradiene specific cyclase.
    Wilderman PR; Peters RJ
    J Am Chem Soc; 2007 Dec; 129(51):15736-7. PubMed ID: 18052062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Impression of a Nonexisting Catalytic Effect: The Role of CotB2 in Guiding the Complex Biosynthesis of Cyclooctat-9-en-7-ol.
    Raz K; Driller R; Dimos N; Ringel M; Brück T; Loll B; Major DT
    J Am Chem Soc; 2020 Dec; 142(51):21562-21574. PubMed ID: 33289561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of monoterpenes: inhibition of (+)-pinene and (-)-pinene cyclases by thia and aza analogs of the 4R- and 4S-alpha-terpinyl carbocation.
    McGeady P; Pyun HJ; Coates RM; Croteau R
    Arch Biochem Biophys; 1992 Nov; 299(1):63-72. PubMed ID: 1444453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclopentane-forming di/sesterterpene synthases: widely distributed enzymes in bacteria, fungi, and plants.
    Minami A; Ozaki T; Liu C; Oikawa H
    Nat Prod Rep; 2018 Dec; 35(12):1330-1346. PubMed ID: 29855001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.