These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 21305609)
41. TGF-β Negatively Regulates Mitf-E Expression and Canine Osteoclastogenesis. Asai K; Hisasue M; Shimokawa F; Funaba M; Murakami M Biochem Genet; 2018 Oct; 56(5):542-552. PubMed ID: 29680988 [TBL] [Abstract][Full Text] [Related]
42. Mechanisms involved in suppression of osteoclast supportive activity by transforming growth factor-β1 via the ubiquitin-proteasome system. Inoue M; Nagai-Yoshioka Y; Yamasaki R; Kawamoto T; Nishihara T; Ariyoshi W PLoS One; 2022; 17(2):e0262612. PubMed ID: 35196318 [TBL] [Abstract][Full Text] [Related]
43. TAK1 is essential for osteoclast differentiation and is an important modulator of cell death by apoptosis and necroptosis. Lamothe B; Lai Y; Xie M; Schneider MD; Darnay BG Mol Cell Biol; 2013 Feb; 33(3):582-95. PubMed ID: 23166301 [TBL] [Abstract][Full Text] [Related]
44. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma. Nakamura R; Kayamori K; Oue E; Sakamoto K; Harada K; Yamaguchi A Biochem Biophys Res Commun; 2015 Mar; 458(4):777-82. PubMed ID: 25681764 [TBL] [Abstract][Full Text] [Related]
45. RanBPM interacts with TβRI, TRAF6 and curbs TGF induced nuclear accumulation of TβRI. Zhang J; Ma W; Tian S; Fan Z; Ma X; Yang X; Zhao Q; Tan K; Chen H; Chen D; Huang BR Cell Signal; 2014 Jan; 26(1):162-72. PubMed ID: 24103590 [TBL] [Abstract][Full Text] [Related]
46. (+)-Vitisin A inhibits osteoclast differentiation by preventing TRAF6 ubiquitination and TRAF6-TAK1 formation to suppress NFATc1 activation. Chiou WF; Huang YL; Liu YW PLoS One; 2014; 9(2):e89159. PubMed ID: 24558484 [TBL] [Abstract][Full Text] [Related]
47. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Sorrentino A; Thakur N; Grimsby S; Marcusson A; von Bulow V; Schuster N; Zhang S; Heldin CH; Landström M Nat Cell Biol; 2008 Oct; 10(10):1199-207. PubMed ID: 18758450 [TBL] [Abstract][Full Text] [Related]
48. Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex. Liu L; Jin R; Duan J; Yang L; Cai Z; Zhu W; Nie Y; He J; Xia C; Gong Q; Song B; Anderson JM; Ai H Acta Biomater; 2020 Feb; 103():281-292. PubMed ID: 31866569 [TBL] [Abstract][Full Text] [Related]
49. Gingipains promote RANKL-induced osteoclastogenesis through the enhancement of integrin β3 in RAW264.7 cells. Mo W; Luo H; Wu J; Xu N; Zhang F; Qiu Q; Zhu W; Liang M J Mol Histol; 2020 Apr; 51(2):147-159. PubMed ID: 32193744 [TBL] [Abstract][Full Text] [Related]
50. The large zinc finger protein ZAS3 is a critical modulator of osteoclastogenesis. Liu S; Madiai F; Hackshaw KV; Allen CE; Carl J; Huschart E; Karanfilov C; Litsky A; Hickey CJ; Marcucci G; Huja S; Agarwal S; Yu J; Caligiuri MA; Wu LC PLoS One; 2011 Mar; 6(3):e17161. PubMed ID: 21390242 [TBL] [Abstract][Full Text] [Related]
51. 1α,25-(OH) Yu C; Zhu Y; Lv X; Wang Y In Vitro Cell Dev Biol Anim; 2021 Oct; 57(9):878-885. PubMed ID: 34780049 [TBL] [Abstract][Full Text] [Related]
52. Dual Oxidase Maturation Factor 1 Positively Regulates RANKL-Induced Osteoclastogenesis via Activating Reactive Oxygen Species and TRAF6-Mediated Signaling. Cheon YH; Lee CH; Jeong DH; Kwak SC; Kim S; Lee MS; Kim JY Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32899248 [TBL] [Abstract][Full Text] [Related]
53. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis. Li C; Zhao J; Sun L; Yao Z; Liu R; Huang J; Liu X Biochem Biophys Res Commun; 2012 Dec; 429(3-4):156-62. PubMed ID: 23142594 [TBL] [Abstract][Full Text] [Related]
54. Overexpressed miR-145 inhibits osteoclastogenesis in RANKL-induced bone marrow-derived macrophages and ovariectomized mice by regulation of Smad3. Yu FY; Xie CQ; Sun JT; Peng W; Huang XW Life Sci; 2018 Jun; 202():11-20. PubMed ID: 29577879 [TBL] [Abstract][Full Text] [Related]
55. Fibronectin-LILRB4/gp49B interaction negatively regulates osteoclastogenesis through inhibition of RANKL-induced TRAF6/TAK1/NF-kB/MAPK signaling. Su MT; Ono K; Kezuka D; Miyamoto S; Mori Y; Takai T Int Immunol; 2023 Mar; 35(3):135-145. PubMed ID: 36331874 [TBL] [Abstract][Full Text] [Related]
56. Pmepa1 induced by RANKL-p38 MAPK pathway has a novel role in osteoclastogenesis. Funakubo N; Xu X; Kukita T; Nakamura S; Miyamoto H; Kukita A J Cell Physiol; 2018 Apr; 233(4):3105-3118. PubMed ID: 28802000 [TBL] [Abstract][Full Text] [Related]
57. The role of TGFβ receptor 1-smad3 signaling in regulating the osteoclastic mode affected by fluoride. Yu H; Jiang N; Yu X; Zhao Z; Zhang X; Xu H Toxicology; 2018 Jan; 393():73-82. PubMed ID: 29127033 [TBL] [Abstract][Full Text] [Related]
58. Hydrophobic patches on SMAD2 and SMAD3 determine selective binding to cofactors. Miyazono KI; Moriwaki S; Ito T; Kurisaki A; Asashima M; Tanokura M Sci Signal; 2018 Mar; 11(523):. PubMed ID: 29588413 [TBL] [Abstract][Full Text] [Related]
59. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. Honma M; Ikebuchi Y; Kariya Y; Hayashi M; Hayashi N; Aoki S; Suzuki H J Bone Miner Res; 2013 Sep; 28(9):1936-49. PubMed ID: 23529793 [TBL] [Abstract][Full Text] [Related]
60. Nuclear Factor-Kappa B Regulation of Osteoclastogenesis and Osteoblastogenesis. Boyce BF; Li J; Yao Z; Xing L Endocrinol Metab (Seoul); 2023 Oct; 38(5):504-521. PubMed ID: 37749800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]