BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 21305689)

  • 1. The emerging face of primary cilia.
    Zaghloul NA; Brugmann SA
    Genesis; 2011 Apr; 49(4):231-46. PubMed ID: 21305689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery, Diagnosis, and Etiology of Craniofacial Ciliopathies.
    Schock EN; Brugmann SA
    Cold Spring Harb Perspect Biol; 2017 Sep; 9(9):. PubMed ID: 28213462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hedgehog receptor function during craniofacial development.
    Xavier GM; Seppala M; Barrell W; Birjandi AA; Geoghegan F; Cobourne MT
    Dev Biol; 2016 Jul; 415(2):198-215. PubMed ID: 26875496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unmasking the ciliopathies: craniofacial defects and the primary cilium.
    Cortés CR; Metzis V; Wicking C
    Wiley Interdiscip Rev Dev Biol; 2015; 4(6):637-53. PubMed ID: 26173831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phenotype-driven ENU mutagenesis screen identifies novel alleles with functional roles in early mouse craniofacial development.
    Sandell LL; Iulianella A; Melton KR; Lynn M; Walker M; Inman KE; Bhatt S; Leroux-Berger M; Crawford M; Jones NC; Dennis JF; Trainor PA
    Genesis; 2011 Apr; 49(4):342-59. PubMed ID: 21305688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Craniofacial ciliopathies: A new classification for craniofacial disorders.
    Brugmann SA; Cordero DR; Helms JA
    Am J Med Genet A; 2010 Dec; 152A(12):2995-3006. PubMed ID: 21108387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tissue-specific role for intraflagellar transport genes during craniofacial development.
    Schock EN; Struve JN; Chang CF; Williams TJ; Snedeker J; Attia AC; Stottmann RW; Brugmann SA
    PLoS One; 2017; 12(3):e0174206. PubMed ID: 28346501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pax6 regulates craniofacial form through its control of an essential cephalic ectodermal patterning center.
    Compagnucci C; Fish JL; Schwark M; Tarabykin V; Depew MJ
    Genesis; 2011 Apr; 49(4):307-25. PubMed ID: 21309073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of Sprouty Produces a Ciliopathic Skeletal Phenotype in Mice Through Upregulation of Hedgehog Signaling.
    Hruba E; Kavkova M; Dalecka L; Macholan M; Zikmund T; Varecha M; Bosakova M; Kaiser J; Krejci P; Hovorakova M; Buchtova M
    J Bone Miner Res; 2021 Nov; 36(11):2258-2274. PubMed ID: 34423857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung's disease in Bardet-Biedl syndrome.
    Tobin JL; Di Franco M; Eichers E; May-Simera H; Garcia M; Yan J; Quinlan R; Justice MJ; Hennekam RC; Briscoe J; Tada M; Mayor R; Burns AJ; Lupski JR; Hammond P; Beales PL
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6714-9. PubMed ID: 18443298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development.
    Kiecker C
    Dev Biol; 2016 Jul; 415(2):314-325. PubMed ID: 26777098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ciliary biology: understanding the cellular and genetic basis of human ciliopathies.
    Cardenas-Rodriguez M; Badano JL
    Am J Med Genet C Semin Med Genet; 2009 Nov; 151C(4):263-80. PubMed ID: 19876935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies.
    Kunova Bosakova M; Varecha M; Hampl M; Duran I; Nita A; Buchtova M; Dosedelova H; Machat R; Xie Y; Ni Z; Martin JH; Chen L; Jansen G; Krakow D; Krejci P
    Hum Mol Genet; 2018 Mar; 27(6):1093-1105. PubMed ID: 29360984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies.
    Ashe A; Butterfield NC; Town L; Courtney AD; Cooper AN; Ferguson C; Barry R; Olsson F; Liem KF; Parton RG; Wainwright BJ; Anderson KV; Whitelaw E; Wicking C
    Hum Mol Genet; 2012 Apr; 21(8):1808-23. PubMed ID: 22228095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel ciliopathic skull defect arising from excess neural crest.
    Tabler JM; Rice CP; Liu KJ; Wallingford JB
    Dev Biol; 2016 Sep; 417(1):4-10. PubMed ID: 27395007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural crest cells utilize primary cilia to regulate ventral forebrain morphogenesis via Hedgehog-dependent regulation of oriented cell division.
    Schock EN; Brugmann SA
    Dev Biol; 2017 Nov; 431(2):168-178. PubMed ID: 28941984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuz regulates craniofacial development through tissue specific responses to signaling factors.
    Zhang Z; Wlodarczyk BJ; Niederreither K; Venugopalan S; Florez S; Finnell RH; Amendt BA
    PLoS One; 2011; 6(9):e24608. PubMed ID: 21935430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt, and FGF signaling.
    Watanabe T; Kanai Y; Matsukawa S; Michiue T
    Genesis; 2015 Oct; 53(10):652-9. PubMed ID: 26249012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cellular and molecular etiology of the craniofacial defects in the avian ciliopathic mutant talpid2.
    Chang CF; Schock EN; O'Hare EA; Dodgson J; Cheng HH; Muir WM; Edelmann RE; Delany ME; Brugmann SA
    Development; 2014 Aug; 141(15):3003-12. PubMed ID: 25053433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects.
    Logan CV; Abdel-Hamed Z; Johnson CA
    Mol Neurobiol; 2011 Feb; 43(1):12-26. PubMed ID: 21110233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.