These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21305882)

  • 1. Performance analysis of a solar-powered organic rankine cycle engine.
    Bryszewska-Mazurek A; Swieboda T; Mazurek W
    J Air Waste Manag Assoc; 2011 Jan; 61(1):3-6. PubMed ID: 21305882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.
    Hu B; Bu X; Ma W
    ScientificWorldJournal; 2014; 2014():742606. PubMed ID: 25202735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy, exergy, and environmental assessment of a small-scale solar organic Rankine cycle using different organic fluids.
    Polanco Piñerez G; Valencia Ochoa G; Duarte-Forero J
    Heliyon; 2021 Sep; 7(9):e07947. PubMed ID: 34553085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery.
    Liu P; Shu G; Tian H; Wang X
    Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exergy and Exergoeconomic Analysis of a Cogeneration Hybrid Solar Organic Rankine Cycle with Ejector.
    Tashtoush B; Morosuk T; Chudasama J
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy, exergy, emergy, and economic evaluation of a novel two-stage solar Rankine power plant.
    Hosseini R; Babaelahi M; Rafat E
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):79140-79155. PubMed ID: 35705763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiobjective optimization of a hybrid electricity generation system based on waste energy of internal combustion engine and solar system for sustainable environment.
    Al-Hawary SIS; Ricardo Nuñez Alvarez J; Ali A; Kumar Tripathi A; Rahardja U; Al-Kharsan IH; Romero-Parra RM; Abdulameer Marhoon H; John V; Hussian W
    Chemosphere; 2023 Sep; 336():139269. PubMed ID: 37339704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal design and zeotropic working fluids mixture selection optimization for a solar waste heat driven combined cooling and power system.
    Kheimi M; K Salamah S; A Maddah H; Mustafa Al Bakri Abdullah M
    Chemosphere; 2023 Sep; 335():139036. PubMed ID: 37245592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic Investigation of an Integrated Solar Combined Cycle with an ORC System.
    Wang S; Fu Z
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropy and Entransy Dissipation Analysis of a Basic Organic Rankine Cycles (ORCs) to Recover Low-Grade Waste Heat Using Mixture Working Fluids.
    Feng YQ; Luo QH; Wang Q; Wang S; He ZX; Zhang W; Wang X; An QS
    Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decelerating catalyst aging of natural gas engines using organic Rankine cycle under road conditions.
    Wang C; Wang X; Ge Y; Xu Y; Hao L; Tan J; Li R; Wen M; Wang Y
    Heliyon; 2024 Jun; 10(12):e33067. PubMed ID: 38994049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Investigation of a 300 kW Organic Rankine Cycle Unit with Radial Turbine for Low-Grade Waste Heat Recovery.
    Wang R; Kuang G; Zhu L; Wang S; Zhao J
    Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy.
    Saleh B
    J Adv Res; 2016 Sep; 7(5):651-60. PubMed ID: 27489732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of low-GWP working fluids as substitutes for R245fa in organic Rankine cycle application.
    Yang MH; Liu MC; Yeh RH
    Heliyon; 2024 Jul; 10(14):e34219. PubMed ID: 39100436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental sustainability of integrating the organic Rankin cycle with anaerobic digestion and combined heat and power generation.
    Bacenetti J; Fusi A; Azapagic A
    Sci Total Environ; 2019 Mar; 658():684-696. PubMed ID: 30678020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exergy Analysis of Two-Stage Organic Rankine Cycle Power Generation System.
    Liu G; Wang Q; Xu J; Miao Z
    Entropy (Basel); 2020 Dec; 23(1):. PubMed ID: 33396767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar driven Stirling engine - chemical heat pump - absorption refrigerator hybrid system as environmental friendly energy system.
    Açıkkalp E; Kandemir SY; Ahmadi MH
    J Environ Manage; 2019 Feb; 232():455-461. PubMed ID: 30502614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of conventional and exergetic life cycle assessments of organic Rankine cycle plants exploiting various low-temperature energy resources.
    Oyekale J; Emagbetere E
    Heliyon; 2022 Jul; 8(7):e09833. PubMed ID: 35815127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exergoeconomic analysis and multi-objective optimization of ORC configurations via Taguchi-Grey Relational Methods.
    Özdemir Küçük E; Kılıç M
    Heliyon; 2023 Apr; 9(4):e15007. PubMed ID: 37064436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermo-economic and environmental optimization using PSO of solar organic Rankine cycle with flat plate solar collector.
    Valencia Ochoa G; Ortiz EV; Forero JD
    Heliyon; 2023 Mar; 9(3):e13697. PubMed ID: 36915537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.