These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21305887)

  • 1. Estimation of the respiratory ventilation rate of preschool children in daily life using accelerometers.
    Kawahara J; Tanaka S; Tanaka C; Hikihara Y; Aoki Y; Yonemoto J
    J Air Waste Manag Assoc; 2011 Jan; 61(1):46-54. PubMed ID: 21305887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triaxial accelerometry for assessment of physical activity in young children.
    Tanaka C; Tanaka S; Kawahara J; Midorikawa T
    Obesity (Silver Spring); 2007 May; 15(5):1233-41. PubMed ID: 17495200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Daily physical activity in japanese preschool children evaluated by triaxial accelerometry: the relationship between period of engagement in moderate-to-vigorous physical activity and daily step counts.
    Tanaka C; Tanaka S
    J Physiol Anthropol; 2009 Nov; 28(6):283-8. PubMed ID: 20009376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating energy expenditure using accelerometers.
    Crouter SE; Churilla JR; Bassett DR
    Eur J Appl Physiol; 2006 Dec; 98(6):601-12. PubMed ID: 17058102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of physical activity types using triaxial accelerometers.
    Skotte J; Korshøj M; Kristiansen J; Hanisch C; Holtermann A
    J Phys Act Health; 2014 Jan; 11(1):76-84. PubMed ID: 23249722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of daily inhalation rate in preschool children using a tri-axial accelerometer: a pilot study.
    Kawahara J; Tanaka S; Tanaka C; Aoki Y; Yonemoto J
    Sci Total Environ; 2011 Jul; 409(16):3073-7. PubMed ID: 21665019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation and comparison of 3 accelerometers for measuring physical activity intensity during nonlocomotive activities and locomotive movements.
    Hikihara Y; Tanaka S; Ohkawara K; Ishikawa-Takata K; Tabata I
    J Phys Act Health; 2012 Sep; 9(7):935-43. PubMed ID: 22971884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis.
    Howe CA; Staudenmayer JW; Freedson PS
    Med Sci Sports Exerc; 2009 Dec; 41(12):2199-206. PubMed ID: 19915498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation and calibration of the Actical accelerometer in preschool children.
    Pfeiffer KA; McIver KL; Dowda M; Almeida MJ; Pate RR
    Med Sci Sports Exerc; 2006 Jan; 38(1):152-7. PubMed ID: 16394968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring actical accelerometers as an objective measure of physical activity in people with multiple sclerosis.
    Kayes NM; Schluter PJ; McPherson KM; Leete M; Mawston G; Taylor D
    Arch Phys Med Rehabil; 2009 Apr; 90(4):594-601. PubMed ID: 19345774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new 2-regression model for the Actical accelerometer.
    Crouter SE; Bassett DR
    Br J Sports Med; 2008 Mar; 42(3):217-24. PubMed ID: 17761786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity of the Actical accelerometer step-count function.
    Esliger DW; Probert A; Connor Gorber S; Bryan S; Laviolette M; Tremblay MS
    Med Sci Sports Exerc; 2007 Jul; 39(7):1200-4. PubMed ID: 17596790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the Hexoskin wearable vest during lying, sitting, standing, and walking activities.
    Villar R; Beltrame T; Hughson RL
    Appl Physiol Nutr Metab; 2015 Oct; 40(10):1019-24. PubMed ID: 26360814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of resistance exercise energy expenditure using triaxial accelerometry.
    Stec MJ; Rawson ES
    J Strength Cond Res; 2012 May; 26(5):1413-22. PubMed ID: 22222328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable recognition of lying, sitting, and standing with a hip-worn accelerometer.
    Vähä-Ypyä H; Husu P; Suni J; Vasankari T; Sievänen H
    Scand J Med Sci Sports; 2018 Mar; 28(3):1092-1102. PubMed ID: 29144567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translation equations to compare ActiGraph GT3X and Actical accelerometers activity counts.
    Straker L; Campbell A
    BMC Med Res Methodol; 2012 Apr; 12():54. PubMed ID: 22520344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of oxygen uptake during fast running using accelerometry and heart rate.
    Fudge BW; Wilson J; Easton C; Irwin L; Clark J; Haddow O; Kayser B; Pitsiladis YP
    Med Sci Sports Exerc; 2007 Jan; 39(1):192-8. PubMed ID: 17218902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of energy expenditure in children using the RT3 accelerometer.
    Kavouras SA; Sarras SE; Tsekouras YE; Sidossis LS
    J Sports Sci; 2008 Jul; 26(9):959-66. PubMed ID: 18569562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of speed and step frequency during walking and running on motion sensor output.
    Rowlands AV; Stone MR; Eston RG
    Med Sci Sports Exerc; 2007 Apr; 39(4):716-27. PubMed ID: 17414811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.