These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21305891)

  • 1. Stabilization of residues obtained from the treatment of laboratory waste: Part 2--transformation of plasma vitrified slag into composites.
    Kuo YM; Tseng HJ; Chang JE; Chao CC; Wang CT; Chang-Chien GP; Wang JW
    J Air Waste Manag Assoc; 2011 Jan; 61(1):78-84. PubMed ID: 21305891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative approach for reusing slags from a plasma vitrification process.
    Kuo YM; Tseng HJ; Chang JE; Wang JW; Wang CT; Chen HT
    J Hazard Mater; 2008 Aug; 156(1-3):442-7. PubMed ID: 18243535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of residues obtained from the treatment of laboratory waste. Part 1--Treatment path of metals in a plasma melting system.
    Kuo YM; Chang JE; Chang KY; Chao CC; Tuan YJ; Chang-Chien GP
    J Air Waste Manag Assoc; 2010 Apr; 60(4):429-38. PubMed ID: 20437778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.
    Zhang Z; Zhang L; Li A
    Waste Manag; 2015 Apr; 38():185-93. PubMed ID: 25649918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous materials produced from incineration ash using thermal plasma technology.
    Yang SF; Chiu WT; Wang TM; Chen CT; Tzeng CC
    Waste Manag; 2014 Jun; 34(6):1079-84. PubMed ID: 23948051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of element distributions in an MSW ash melting treatment system.
    Sekito T; Dote Y; Onoue K; Sakanakura H; Nakamura K
    Waste Manag; 2014 Sep; 34(9):1637-43. PubMed ID: 24863626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma vitrification and re-use of non-combustible fiber reinforced plastic, gill net and waste glass.
    Chu JP; Chen YT; Mahalingam T; Tzeng CC; Cheng TW
    J Hazard Mater; 2006 Dec; 138(3):628-32. PubMed ID: 16839685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study on vitrification of simulated medical wastes by thermal plasma].
    Zhang L; Yan JH; Du CM; Lu SY; Li XD
    Huan Jing Ke Xue; 2012 Jun; 33(6):2104-9. PubMed ID: 22946202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of metal values from copper slag and reuse of residual secondary slag.
    Sarfo P; Das A; Wyss G; Young C
    Waste Manag; 2017 Dec; 70():272-281. PubMed ID: 28988605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.
    Yang Y; Xiao Y; Voncken JH; Wilson N
    J Hazard Mater; 2008 Jun; 154(1-3):871-9. PubMed ID: 18077086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of copper slag in glass-epoxy composites for improved wear resistance.
    Biswas S; Satapathy A
    Waste Manag Res; 2010 Jul; 28(7):615-25. PubMed ID: 19942642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling dredged harbor sediment to construction materials by sintering with steel slag and waste glass: Characteristics, alkali-silica reactivity and metals stability.
    Lim YC; Shih YJ; Tsai KC; Yang WD; Chen CW; Dong CD
    J Environ Manage; 2020 Sep; 270():110869. PubMed ID: 32507745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of ladle slag in cement composites: Environmental impacts.
    Serjun VZ; Mladenovič A; Mirtič B; Meden A; Ščančar J; Milačič R
    Waste Manag; 2015 Sep; 43():376-85. PubMed ID: 26008145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.
    Teo PT; Anasyida AS; Basu P; Nurulakmal MS
    Waste Manag; 2014 Dec; 34(12):2697-708. PubMed ID: 25242607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The recycling of comminuted glass-fiber-reinforced resin from electronic waste.
    Duan H; Jia W; Li J
    J Air Waste Manag Assoc; 2010 May; 60(5):532-9. PubMed ID: 20480852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of SiO2 on immobilization of metals and encapsulation of a glass network in slag.
    Kuo YM; Lin TC; Tsai PJ
    J Air Waste Manag Assoc; 2003 Nov; 53(11):1412-6. PubMed ID: 14649761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties.
    Sharma K; Khilari V; Chaudhary BU; Jogi AB; Pandit AB; Kale RD
    Waste Manag; 2020 Apr; 107():227-234. PubMed ID: 32311640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification.
    Huang R; Huang KL; Lin ZY; Wang JW; Lin C; Kuo YM
    J Environ Manage; 2013 Nov; 129():586-92. PubMed ID: 24036091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of sodium ions in the vitrification process: glass matrix modification, slag structure depolymerization, and influence of metal immobilization.
    Kuo YM
    J Air Waste Manag Assoc; 2014 Jul; 64(7):774-84. PubMed ID: 25122951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal behavior during vitrification of incinerator ash in a coke bed furnace.
    Kuo YM; Lin TC; Tsai PJ
    J Hazard Mater; 2004 Jun; 109(1-3):79-84. PubMed ID: 15177748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.